{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T05:06:54Z","timestamp":1725167214829},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Shandong University of Science & Technology, China","award":["2016RCJJ036"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.eswa.2017.02.049","type":"journal-article","created":{"date-parts":[[2017,3,21]],"date-time":"2017-03-21T09:33:55Z","timestamp":1490088835000},"page":"22-27","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":83,"special_numbering":"C","title":["Feature selection based on FDA and F-score for multi-class classification"],"prefix":"10.1016","volume":"81","author":[{"given":"QingJun","family":"Song","sequence":"first","affiliation":[]},{"given":"HaiYan","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.02.049_bib0019","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.jbi.2005.03.003","article-title":"GMDH-based feature ranking and selection for improved classification of medical data","volume":"38","author":"Abdel-Aal","year":"2005","journal-title":"Journal of Biomedical Informatics"},{"key":"10.1016\/j.eswa.2017.02.049_bib0026","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/S0304-3975(97)00115-1","article-title":"On the approximation of minimizing nonzero variables or unsatisfied relations in linear systems","volume":"209","author":"Amaldi","year":"1998","journal-title":"Theoretical Computer Science"},{"issue":"2","key":"10.1016\/j.eswa.2017.02.049_bib0004","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.patrec.2014.10.007","article-title":"A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation","volume":"52","author":"Banka","year":"2015","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.eswa.2017.02.049_bib0007","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1016\/j.asoc.2015.06.060","article-title":"Privacy preserving sub-feature selection in distributed data mining","volume":"36","author":"Bhuyan","year":"2015","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2017.02.049_bib0036","series-title":"UCI repository of machine learning databases","author":"Blake","year":"1998"},{"key":"10.1016\/j.eswa.2017.02.049_bib0003","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/S0020-0255(02)00276-1","article-title":"A new feature extraction technique for on-line recognition of handwritten alphanumeric characters","volume":"148","author":"Chakraborty","year":"2002","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2017.02.049_bib0037","author":"Chang"},{"issue":"7","key":"10.1016\/j.eswa.2017.02.049_bib0032","doi-asserted-by":"crossref","first-page":"4902","DOI":"10.1016\/j.eswa.2009.12.025","article-title":"Combination of feature selection approaches with SVM in credit scoring","volume":"37","author":"Chen","year":"2010","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.02.049_bib0016","series-title":"NIPS 2003 feature selection challenge","first-page":"1","article-title":"Combining SVMs with various feature selection strategies","author":"Chen","year":"2003"},{"key":"10.1016\/j.eswa.2017.02.049_bib0010","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.asoc.2012.08.003","article-title":"A minimax probabilistic approach to feature transformation for multi-class data","volume":"13","author":"Deng","year":"2013","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2017.02.049_bib0024","first-page":"1","article-title":"Fizzy: Feature subset selection for metagenomics","volume":"1","author":"Ditzler","year":"2015","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2017.02.049_bib0009","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.patcog.2015.08.018","article-title":"Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images","volume":"51","author":"Feng","year":"2016","journal-title":"Pattern Recognition"},{"issue":"10","key":"10.1016\/j.eswa.2017.02.049_bib0028","doi-asserted-by":"crossref","first-page":"906","DOI":"10.1093\/bioinformatics\/16.10.906","article-title":"Support vector machine classification and validation of cancer tissue samples using microarray expression data","volume":"16","author":"Furey","year":"2000","journal-title":"Bioinformatics"},{"issue":"2","key":"10.1016\/j.eswa.2017.02.049_bib0031","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1016\/j.eswa.2009.05.075","article-title":"Multi-class f-Score feature selection approach to classification of obstructive sleep apnea syndrome","volume":"37","author":"G\u00fcne\u015f","year":"2010","journal-title":"Expert Systems with Applications"},{"issue":"6","key":"10.1016\/j.eswa.2017.02.049_bib0033","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0064704","article-title":"A novel approach for lie detection based on f-score and extreme learning machine","volume":"8","author":"Gao","year":"2013","journal-title":"PLoS ONE"},{"issue":"11","key":"10.1016\/j.eswa.2017.02.049_bib0034","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0109700","article-title":"A Novel algorithm to enhance P300 in single trials: Application to lie detection using f-score and SVM","volume":"9","author":"Gao","year":"2014","journal-title":"PLoS ONE"},{"issue":"15","key":"10.1016\/j.eswa.2017.02.049_bib0018","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.eswa.2017.02.049_bib0029","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1023\/A:1012487302797","article-title":"Gene selection for cancer classification using support vector machines","volume":"46","author":"Guyon","year":"2002","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.02.049_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2014.12.024","article-title":"Feature space discriminant analysis for hyperspectral data feature reduction","volume":"102","author":"Imani","year":"2015","journal-title":"ISPRS Journal of Photogrammetry and Remote Sensing"},{"issue":"5","key":"10.1016\/j.eswa.2017.02.049_bib0020","doi-asserted-by":"crossref","first-page":"5704","DOI":"10.1016\/j.eswa.2010.10.063","article-title":"Unsupervised feature selection using weighted principal components","volume":"38","author":"Kim","year":"2011","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.02.049_bib0017","series-title":"Proceedings of the ninth international workshop on machine learning","first-page":"249","article-title":"A practical approach to feature selection","author":"Kira","year":"1992"},{"issue":"4","key":"10.1016\/j.eswa.2017.02.049_bib0008","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1109\/TGRS.2008.2008308","article-title":"Kernel nonparametric weighted feature extraction for hyperspectral image classification","volume":"47","author":"Kuo","year":"2009","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"6","key":"10.1016\/j.eswa.2017.02.049_bib0025","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1049\/el.2015.4172","article-title":"Feature selection based on geometric distance for high-dimensional data","volume":"52","author":"Lee","year":"2016","journal-title":"Electronics Letters"},{"issue":"3","key":"10.1016\/j.eswa.2017.02.049_bib0002","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0031-3203(99)00053-9","article-title":"Adaptive linear dimensionality reduction for classification","volume":"33","author":"Lotlikar","year":"2000","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2017.02.049_bib0035","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.compag.2015.11.009","article-title":"Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry","volume":"121","author":"Maione","year":"2016","journal-title":"Computers and Electronics in Agriculture"},{"issue":"8","key":"10.1016\/j.eswa.2017.02.049_bib0023","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"7","key":"10.1016\/j.eswa.2017.02.049_bib0030","doi-asserted-by":"crossref","first-page":"10367","DOI":"10.1016\/j.eswa.2009.01.041","article-title":"A new feature selection method on classification of medical datasets: Kernel f-score feature selection","volume":"36","author":"Polat","year":"2009","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.02.049_bib0014","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1023\/A:1025667309714","article-title":"Theoretical and empirical analysis of relieff and rrelieff","volume":"53","author":"Robnik-\u0160ikonja","year":"2003","journal-title":"Machine Learning"},{"issue":"12","key":"10.1016\/j.eswa.2017.02.049_bib0021","doi-asserted-by":"crossref","first-page":"11094","DOI":"10.1016\/j.eswa.2012.03.061","article-title":"Fast feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches","volume":"39","author":"Ruiz","year":"2012","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.02.049_bib0005","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.neucom.2013.03.021","article-title":"Machine learning using Bernoulli mixture models: Clustering, rule extraction and dimensionality reduction","volume":"119","author":"Saeed","year":"2013","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.eswa.2017.02.049_bib0027","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1016\/j.eswa.2006.10.010","article-title":"Feature selection for the SVM: An application to hypertension diagnosis","volume":"34","author":"Su","year":"2008","journal-title":"Expert Systems with Applications"},{"issue":"6","key":"10.1016\/j.eswa.2017.02.049_bib0001","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.1109\/TPAMI.2007.1093","article-title":"Iterative RELIEF for feature weighting: Algorithms, theories, and applications","volume":"29","author":"Sun","year":"2007","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2017.02.049_bib0015","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.neucom.2014.10.059","article-title":"Discriminative cost sensitive Laplacian score for face recognition","volume":"152","author":"Wan","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.02.049_bib0022","doi-asserted-by":"crossref","first-page":"706","DOI":"10.1016\/j.neucom.2015.05.053","article-title":"Heterogeneous feature subset selection using mutual information-based feature transformation","volume":"168","author":"Wei","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.02.049_bib0013","first-page":"1","article-title":"An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis","volume":"2013","author":"Y\u0131lmaz","year":"2013","journal-title":"Computational and Mathematical Methods in Medicine"},{"key":"10.1016\/j.eswa.2017.02.049_bib0006","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.02.049_bib0012","doi-asserted-by":"crossref","first-page":"2656","DOI":"10.1016\/j.patcog.2015.02.025","article-title":"A novel feature selection method considering feature interact ion","volume":"48","author":"Zeng","year":"2015","journal-title":"Pattern Recognition"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417301203?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417301203?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T05:54:36Z","timestamp":1535954076000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417417301203"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":37,"alternative-id":["S0957417417301203"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.02.049","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Feature selection based on FDA and F-score for multi-class classification","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.02.049","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}