{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,15]],"date-time":"2025-04-15T01:45:40Z","timestamp":1744681540144,"version":"3.37.3"},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"vor","delay-in-days":30,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002347","name":"Federal Ministry of Education and Research Bonn Office","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.envsoft.2024.106147","type":"journal-article","created":{"date-parts":[[2024,7,17]],"date-time":"2024-07-17T23:58:14Z","timestamp":1721260694000},"page":"106147","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["A calibration protocol for soil-crop models"],"prefix":"10.1016","volume":"180","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3500-8179","authenticated-orcid":false,"given":"Daniel","family":"Wallach","sequence":"first","affiliation":[]},{"given":"Samuel","family":"Buis","sequence":"additional","affiliation":[]},{"given":"Diana-Maria","family":"Seserman","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4322-3450","authenticated-orcid":false,"given":"Taru","family":"Palosuo","sequence":"additional","affiliation":[]},{"given":"Peter J.","family":"Thorburn","sequence":"additional","affiliation":[]},{"given":"Henrike","family":"Mielenz","sequence":"additional","affiliation":[]},{"given":"Eric","family":"Justes","sequence":"additional","affiliation":[]},{"given":"Kurt-Christian","family":"Kersebaum","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Dumont","sequence":"additional","affiliation":[]},{"given":"Marie","family":"Launay","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3283-8361","authenticated-orcid":false,"given":"Sabine Julia","family":"Seidel","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.envsoft.2024.106147_bib1","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1890\/13-1452.1","article-title":"Model selection for ecologists: the worldviews of AIC and BIC","volume":"95","author":"Aho","year":"2014","journal-title":"Ecology"},{"year":"2011","series-title":"Methods of Introducing System Models into Agricultural Research, Advances in Agricultural Systems Modeling","key":"10.1016\/j.envsoft.2024.106147_bib2"},{"key":"10.1016\/j.envsoft.2024.106147_bib3","doi-asserted-by":"crossref","first-page":"13485","DOI":"10.1021\/acs.est.2c02023","article-title":"How modelers model: the overlooked social and human dimensions in model Intercomparison studies","volume":"56","author":"Albanito","year":"2022","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.envsoft.2024.106147_bib4","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.agrformet.2012.11.017","article-title":"Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe","volume":"170","author":"Angulo","year":"2013","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.envsoft.2024.106147_bib5","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.eja.2013.04.003","article-title":"Characteristic \u2018fingerprints\u2019 of crop model responses to weather input data at different spatial resolutions","volume":"49","author":"Angulo","year":"2013","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.envsoft.2024.106147_bib6","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1038\/nclimate1916","article-title":"Uncertainty in simulating wheat yields under climate change","volume":"3","author":"Asseng","year":"2013","journal-title":"Nat. Clim. Change"},{"key":"10.1016\/j.envsoft.2024.106147_bib7","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1111\/gcb.14481","article-title":"Climate change impact and adaptation for wheat protein","volume":"25","author":"Asseng","year":"2019","journal-title":"Global Change Biol."},{"year":"2023","series-title":"STICS Soil Crop Model. Conceptual Framework, Equations and Uses","author":"Beaudoin","key":"10.1016\/j.envsoft.2024.106147_bib8"},{"key":"10.1016\/j.envsoft.2024.106147_bib9","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1111\/2041-210X.12541","article-title":"The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity","volume":"7","author":"Brewer","year":"2016","journal-title":"Methods Ecol. Evol."},{"key":"10.1016\/j.envsoft.2024.106147_bib10","doi-asserted-by":"crossref","DOI":"10.1111\/ejss.13330","article-title":"Multi\u2010modelling predictions show high uncertainty of required carbon input changes to reach a 4\u2030 target","volume":"73","author":"Bruni","year":"2022","journal-title":"Eur. J. Soil Sci."},{"author":"Buis","key":"10.1016\/j.envsoft.2024.106147_bib11"},{"key":"10.1016\/j.envsoft.2024.106147_bib12","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.agrformet.2010.09.007","article-title":"The simulation of phenological development in dynamic crop model: the Bayesian comparison of different methods","volume":"151","author":"Ceglar","year":"2011","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.envsoft.2024.106147_bib13","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/B978-0-444-51862-0.50018-6","article-title":"AIC, BIC and recent advances in model selection","author":"Chakrabarti","year":"2011","journal-title":"Philos. Stat"},{"key":"10.1016\/j.envsoft.2024.106147_bib14","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.envsoft.2016.04.009","article-title":"Uncertainty in crop model predictions: what is the role of users?","volume":"81","author":"Confalonieri","year":"2016","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib15","doi-asserted-by":"crossref","DOI":"10.3133\/sir20105211","article-title":"Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis","author":"Doherty","year":"2010"},{"key":"10.1016\/j.envsoft.2024.106147_bib16","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.envsoft.2013.10.022","article-title":"Parameter identification of the STICS crop model, using an accelerated formal MCMC approach","volume":"52","author":"Dumont","year":"2014","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib17","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.eja.2011.05.003","article-title":"Methodological comparison of calibration procedures for durum wheat parameters in the STICS model","volume":"35","author":"Guillaume","year":"2011","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.envsoft.2024.106147_bib18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/10556780512331318290","article-title":"Effect of dimensionality on the Nelder\u2013Mead simplex method. Optim","volume":"21","author":"Han","year":"2006","journal-title":"Methods Softw."},{"key":"10.1016\/j.envsoft.2024.106147_bib19","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.agrformet.2016.12.015","article-title":"Data requirement for effective calibration of process-based crop models","volume":"234\u2013235","author":"He","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.envsoft.2024.106147_bib20","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.agrformet.2008.08.015","article-title":"Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach","volume":"149","author":"Iizumi","year":"2009","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.envsoft.2024.106147_bib21","first-page":"1337","article-title":"CoupModel: model use, calibration, and validation","volume":"55","author":"Jansson","year":"2012","journal-title":"Trans. ASABE (Am. Soc. Agric. Biol. Eng.)"},{"key":"10.1016\/j.envsoft.2024.106147_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.fcr.2022.108560","article-title":"A comparison of multiple calibration and ensembling methods for estimating genetic coefficients of CERES-Rice to simulate phenology and yields","volume":"284","author":"Jha","year":"2022","journal-title":"Field Crops Res."},{"key":"10.1016\/j.envsoft.2024.106147_bib23","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2020.104901","article-title":"A multiple and ensembling approach for calibration and evaluation of genetic coefficients of CERES-Maize to simulate maize phenology and yield in Michigan","volume":"135","author":"Jha","year":"2021","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib24","series-title":"Estimating DSSAT Cropping System Cultivar-specific Parameters Using Bayesian Techniques","first-page":"365","author":"Jones","year":"2011"},{"key":"10.1016\/j.envsoft.2024.106147_bib25","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/S1161-0301(02)00108-9","article-title":"An overview of APSIM, a model designed for farming systems simulation","volume":"18","author":"Keating","year":"2003","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.envsoft.2024.106147_bib26","series-title":"Special Features of the HERMES Model and Additional Procedures for Parameterization, Calibration, Validation, and Applications","first-page":"65","author":"Kersebaum","year":"2011"},{"key":"10.1016\/j.envsoft.2024.106147_bib27","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.fcr.2009.06.007","article-title":"Multivariate global sensitivity analysis for dynamic crop models","volume":"113","author":"Lamboni","year":"2009","journal-title":"Field Crops Res."},{"year":"2023","series-title":"STICSonR: Manage STICS Simulations Running the Executable or JavaStics","author":"Lecharpentier","key":"10.1016\/j.envsoft.2024.106147_bib28"},{"key":"10.1016\/j.envsoft.2024.106147_bib29","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/j.jhydrol.2019.04.053","article-title":"Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation","volume":"574","author":"Li","year":"2019","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2024.106147_bib30","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1111\/gcb.12758","article-title":"Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions","volume":"21","author":"Li","year":"2015","journal-title":"Global Change Biol."},{"key":"10.1016\/j.envsoft.2024.106147_bib31","doi-asserted-by":"crossref","first-page":"241","DOI":"10.17660\/ActaHortic.2017.1182.29","article-title":"A comparison of Bayesian and classical methods for parameter estimation in greenhouse crop models","author":"L\u00f3pez-Cruz","year":"2017","journal-title":"Acta Hortic."},{"key":"10.1016\/j.envsoft.2024.106147_bib32","doi-asserted-by":"crossref","DOI":"10.1016\/j.fcr.2016.05.001","article-title":"Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles","volume":"202","author":"Maiorano","year":"2017","journal-title":"Field Crops Res."},{"key":"10.1016\/j.envsoft.2024.106147_bib33","doi-asserted-by":"crossref","first-page":"610","DOI":"10.3390\/w13050610","article-title":"Global sensitivity analysis and calibration by differential evolution algorithm of HORTSYST crop model for fertigation management","volume":"13","author":"Mart\u00ednez-Ruiz","year":"2021","journal-title":"Water"},{"key":"10.1016\/j.envsoft.2024.106147_bib34","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1111\/gcb.12768","article-title":"Multimodel ensembles of wheat growth: many models are better than one","volume":"21","author":"Martre","year":"2015","journal-title":"Global Change Biol."},{"key":"10.1016\/j.envsoft.2024.106147_bib35","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.envsoft.2014.12.011","article-title":"Understanding the DayCent model: calibration, sensitivity, and identifiability through inverse modeling","volume":"66","author":"Necp\u00e1lov\u00e1","year":"2015","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib36","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1093\/comjnl\/7.4.308","article-title":"A simplex method for function minimization","volume":"7","author":"Nelder","year":"1965","journal-title":"Comput. J."},{"key":"10.1016\/j.envsoft.2024.106147_bib37","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1007\/s13593-022-00854-9","article-title":"How to build a crop model","volume":"43","author":"Pasley","year":"2023","journal-title":"A review. Agron. Sustain. Dev."},{"key":"10.1016\/j.envsoft.2024.106147_bib38","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1007\/s11119-022-09885-4","article-title":"A review of methods to evaluate crop model performance at multiple and changing spatial scales","volume":"23","author":"Pasquel","year":"2022","journal-title":"Precis. Agric."},{"key":"10.1016\/j.envsoft.2024.106147_bib39","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.eja.2015.11.021","article-title":"Assessing uncertainty and complexity in regional-scale crop model simulations","volume":"88","author":"Ramirez-Villegas","year":"2017","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.envsoft.2024.106147_bib40","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1002\/csc2.20048","article-title":"CGIAR modeling approaches for resource\u2010constrained scenarios: I. Accelerating crop breeding for a changing climate","volume":"60","author":"Ramirez\u2010Villegas","year":"2020","journal-title":"Crop Sci."},{"key":"10.1016\/j.envsoft.2024.106147_bib41","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2012.09.011","article-title":"The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies","volume":"170","author":"Rosenzweig","year":"2013","journal-title":"Agric. For. Meteorol."},{"year":"1989","series-title":"Nonlinear Regression","author":"Seber","key":"10.1016\/j.envsoft.2024.106147_bib42"},{"key":"10.1016\/j.envsoft.2024.106147_bib43","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.1111\/gcb.14019","article-title":"Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments","volume":"24","author":"Tao","year":"2018","journal-title":"Global Change Biol."},{"key":"10.1016\/j.envsoft.2024.106147_bib44","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.agsy.2018.06.009","article-title":"Performance of the MARS-crop yield forecasting system for the European Union: assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015","volume":"168","author":"van der Velde","year":"2019","journal-title":"Agric. Syst."},{"year":"2023","series-title":"CroPlotR: A Package to Analyse Crop Model Simulations Outputs with Plots and Statistics","author":"Vezy","key":"10.1016\/j.envsoft.2024.106147_bib45"},{"key":"10.1016\/j.envsoft.2024.106147_bib46","doi-asserted-by":"crossref","DOI":"10.1111\/gcb.14411","article-title":"Multimodel ensembles improve predictions of crop\u2013environment\u2013management interactions","author":"Wallach","year":"2018","journal-title":"Global Change Biol."},{"year":"2023","series-title":"Uncertainty in Crop Phenology Simulations Is Driven Primarily by Parameter Variability","author":"Wallach","key":"10.1016\/j.envsoft.2024.106147_bib47"},{"key":"10.1016\/j.envsoft.2024.106147_bib48","doi-asserted-by":"crossref","DOI":"10.1016\/j.eja.2020.126195","article-title":"How well do crop modeling groups predict wheat phenology, given calibration data from the target population?","volume":"124","author":"Wallach","year":"2021","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.envsoft.2024.106147_bib49","article-title":"Multi-model evaluation of phenology prediction for wheat in Australia","volume":"298\u2013299","author":"Wallach","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.envsoft.2024.106147_bib50","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2021.105206","article-title":"The chaos in calibrating crop models: lessons learned from a multi-model calibration exercise","volume":"145","author":"Wallach","year":"2021","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib51","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1007\/s13593-023-00900-0","article-title":"Proposal and extensive test of a calibration protocol for crop phenology models","volume":"43","author":"Wallach","year":"2023","journal-title":"Agron. Sustain. Dev."},{"key":"10.1016\/j.envsoft.2024.106147_bib52","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1038\/s43016-020-00181-w","article-title":"Sources of uncertainty for wheat yield projections under future climate are site-specific","volume":"1","author":"Wang","year":"2020","journal-title":"Nat. Food"},{"key":"10.1016\/j.envsoft.2024.106147_bib53","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1016\/j.advengsoft.2011.04.004","article-title":"Parameter sensitivity study of the Nelder\u2013Mead simplex method","volume":"42","author":"Wang","year":"2011","journal-title":"Adv. Eng. Software"},{"key":"10.1016\/j.envsoft.2024.106147_bib54","series-title":"Special Features of the EPIC and APEX Modeling Package and Procedures for Parameterization, Calibration, Validation, and Applications","first-page":"177","author":"Wang","year":"2011"},{"key":"10.1016\/j.envsoft.2024.106147_bib55","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.fcr.2015.10.009","article-title":"Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: a multi-model comparison","volume":"202","author":"Webber","year":"2017","journal-title":"Field Crops Res."},{"key":"10.1016\/j.envsoft.2024.106147_bib56","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.agsy.2013.12.006","article-title":"What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?","volume":"127","author":"Webber","year":"2014","journal-title":"Agric. Syst."},{"key":"10.1016\/j.envsoft.2024.106147_bib57","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1038\/s43016-019-0004-2","article-title":"Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat","volume":"1","author":"Xiong","year":"2020","journal-title":"Nat. Food"},{"author":"Ypma","key":"10.1016\/j.envsoft.2024.106147_bib58"},{"key":"10.1016\/j.envsoft.2024.106147_bib59","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.eja.2017.04.004","article-title":"Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China","volume":"87","author":"Zhang","year":"2017","journal-title":"Eur. J. Agron."}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815224002081?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815224002081?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T17:27:29Z","timestamp":1728494849000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815224002081"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":59,"alternative-id":["S1364815224002081"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2024.106147","relation":{},"ISSN":["1364-8152"],"issn-type":[{"type":"print","value":"1364-8152"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A calibration protocol for soil-crop models","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2024.106147","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"106147"}}