{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:14:28Z","timestamp":1735586068562},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,7,5]],"date-time":"2023-07-05T00:00:00Z","timestamp":1688515200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000287","name":"Royal Academy of Engineering","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000287","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010021","name":"University of West London","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010021","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000275","name":"Leverhulme Trust","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000275","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.envsoft.2023.105772","type":"journal-article","created":{"date-parts":[[2023,7,5]],"date-time":"2023-07-05T06:38:56Z","timestamp":1688539136000},"page":"105772","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["Event-based decision support algorithm for real-time flood forecasting in urban drainage systems using machine learning modelling"],"prefix":"10.1016","volume":"167","author":[{"given":"Farzad","family":"Piadeh","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1459-8408","authenticated-orcid":false,"given":"Kourosh","family":"Behzadian","sequence":"additional","affiliation":[]},{"given":"Albert S.","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Luiza C.","family":"Campos","sequence":"additional","affiliation":[]},{"given":"Joseph P.","family":"Rizzuto","sequence":"additional","affiliation":[]},{"given":"Zoran","family":"Kapelan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.envsoft.2023.105772_bib1","doi-asserted-by":"crossref","first-page":"558","DOI":"10.1016\/j.jhydrol.2018.09.044","article-title":"Model predictive control for optimising the operation of urban drainage systems","volume":"566","author":"Abou Rjeily","year":"2018","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2021.105136","article-title":"Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions","volume":"144","author":"Adikari","year":"2021","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib3","article-title":"Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity","volume":"599","author":"Ahmed","year":"2021","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib4","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2021.126526","article-title":"A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction","volume":"601","author":"Alizadeh","year":"2021","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib5","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.advwatres.2017.10.002","article-title":"Multivariate missing data in hydrology \u2013 review and applications","volume":"110","author":"Ben Aissia","year":"2017","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.envsoft.2023.105772_bib6","series-title":"Urban Drainage","first-page":"78","author":"Butler","year":"2018"},{"key":"10.1016\/j.envsoft.2023.105772_bib7","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1016\/j.jhydrol.2014.06.013","article-title":"Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control","volume":"517","author":"Chang","year":"2014","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2022.128772","article-title":"Linear, nonlinear, parametric and nonparametric regression models for nonstationary flood frequency analysis","volume":"616","author":"Chen","year":"2023","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib9","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.envsoft.2018.08.008","article-title":"Variance based sensitivity analysis of 1D and 2D hydraulic models: an experimental urban flood case","volume":"109","author":"Chen","year":"2018","journal-title":"Environ. Model. Software"},{"issue":"1","key":"10.1016\/j.envsoft.2023.105772_bib10","doi-asserted-by":"crossref","first-page":"127","DOI":"10.2166\/nh.2019.090","article-title":"Urban flood risk mapping using data-driven geospatial techniques for a flood-prone case area in Iran","volume":"51","author":"Darabi","year":"2020","journal-title":"Nord. Hydrol"},{"key":"10.1016\/j.envsoft.2023.105772_bib11","series-title":"Food and Rural Affairs","year":"2022"},{"key":"10.1016\/j.envsoft.2023.105772_bib12","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.jnca.2016.11.004","article-title":"A distributed real-time approach for mitigating CSO and flooding in urban drainage systems","volume":"78","author":"Garofalo","year":"2017","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.envsoft.2023.105772_bib13","series-title":"Understanding Hydraulics","first-page":"507","author":"Hamil","year":"2011"},{"key":"10.1016\/j.envsoft.2023.105772_bib14","doi-asserted-by":"crossref","DOI":"10.1016\/j.pce.2021.103027","article-title":"Evaluation of short-term streamflow prediction methods in urban river basins","volume":"123","author":"Huang","year":"2021","journal-title":"Phys. Chem. Earth"},{"issue":"4","key":"10.1016\/j.envsoft.2023.105772_bib15","doi-asserted-by":"crossref","first-page":"1554","DOI":"10.1002\/2014MS000416","article-title":"A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data","volume":"7","author":"Jones","year":"2015","journal-title":"J. Adv. Model. Earth Syst."},{"key":"10.1016\/j.envsoft.2023.105772_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2023.105623","article-title":"Data-driven surrogate modeling: introducing spatial lag to consider spatial autocorrelation of flooding within urban drainage systems","volume":"161","author":"Li","year":"2023","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib17","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2021.126636","article-title":"A hybrid deep learning algorithm and its application to streamflow prediction","volume":"601","author":"Lin","year":"2021","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2022.105478","article-title":"Urban flood numerical simulation: research, methods and future perspectives","volume":"156","author":"Luo","year":"2022","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib19","doi-asserted-by":"crossref","DOI":"10.1016\/j.advwatres.2020.103622","article-title":"A long Short-Term memory cyclic model with mutual information for hydrology forecasting: a Case study in the xixian basin","volume":"141","author":"Lv","year":"2020","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.envsoft.2023.105772_bib20","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2021.126268","article-title":"Multi-criteria, time dependent sensitivity analysis of an event-oriented, physically-based, distributed sediment and runoff model","volume":"598","author":"Meles","year":"2021","journal-title":"J. Hydrol."},{"issue":"6","key":"10.1016\/j.envsoft.2023.105772_bib21","doi-asserted-by":"crossref","first-page":"1326","DOI":"10.2166\/wst.2014.024","article-title":"Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data","volume":"69","author":"Mounce","year":"2014","journal-title":"Water Sci. Technol."},{"key":"10.1016\/j.envsoft.2023.105772_bib22","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.jhydrol.2016.05.014","article-title":"A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products","volume":"539","author":"Nanda","year":"2016","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib23","doi-asserted-by":"crossref","first-page":"890","DOI":"10.1016\/j.jhydrol.2019.05.051","article-title":"Enhancing real-time streamflow forecasts with wavelet-neural network based error-updating schemes and ECMWF meteorological predictions in Variable Infiltration Capacity model","volume":"575","author":"Nanda","year":"2019","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib24","series-title":"The Role of Event Identification in Translating Performance Assessment of Time-Series Urban Flood Forecasting","author":"Piadeh","year":"2021"},{"key":"10.1016\/j.envsoft.2023.105772_bib25","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2022.127476","article-title":"A critical review of real-time modelling of flood forecasting in urban drainage systems","author":"Piadeh","year":"2022","journal-title":"J. Hydrol."},{"key":"10.1016\/j.envsoft.2023.105772_bib26","series-title":"Water Efficiency Conference","article-title":"Multi-step flood forecasting in urban drainage systems using time-series data mining techniques","author":"Piadeh","year":"2022"},{"key":"10.1016\/j.envsoft.2023.105772_bib27","article-title":"Real-time flood overflow forecasting in Urban Drainage Systems by using time-series multi-stacking of data mining techniques","volume":"2023","author":"Piadeh","year":"2023","journal-title":"EGU General Assembly"},{"key":"10.1016\/j.envsoft.2023.105772_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.jenvman.2021.113086","article-title":"Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh","volume":"295","author":"Rahman","year":"2021","journal-title":"J. Environ. Manag."},{"key":"10.1016\/j.envsoft.2023.105772_bib29","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2021.105159","article-title":"Deep learning explained: fundamentals, explainability, and bridgeability to process-based modelling","volume":"144","author":"Razavi","year":"2021","journal-title":"Environ. Model. Software"},{"issue":"6","key":"10.1016\/j.envsoft.2023.105772_bib30","article-title":"Coevolution of machine learning and process\u2010based modelling to revolutionize Earth and environmental sciences","volume":"36","author":"Razavi","year":"2022","journal-title":"A perspective. Hydrological Processes"},{"key":"10.1016\/j.envsoft.2023.105772_bib31","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2020.104954","article-title":"The Future of Sensitivity Analysis: an essential discipline for systems modeling and policy support","volume":"137","author":"Razavi","year":"2021","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib34","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2021.105226","article-title":"Sensitivity analysis: a discipline coming of age","volume":"146","author":"Saltelli","year":"2021","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib35","series-title":"Flood Risk Management Glossary","year":"2021"},{"key":"10.1016\/j.envsoft.2023.105772_bib36","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2022.105335","article-title":"Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: case study","volume":"150","author":"Szel\u0105g","year":"2022","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2023.105772_bib37","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.envsoft.2017.06.027","article-title":"An integrated assessment of urban flooding mitigation strategies for robust decision making","volume":"95","author":"Xie","year":"2017","journal-title":"Environ. Model. Software"},{"issue":"4","key":"10.1016\/j.envsoft.2023.105772_bib38","doi-asserted-by":"crossref","first-page":"4015","DOI":"10.1016\/j.aej.2021.02.046","article-title":"Application of artificial intelligence algorithms for hourly river level forecast: a case study of Muda River, Malaysia","volume":"60","author":"Zakaria","year":"2021","journal-title":"Alex. Eng. J."},{"key":"10.1016\/j.envsoft.2023.105772_bib39","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1016\/j.jhydrol.2017.11.018","article-title":"Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring","volume":"556","author":"Zhang","year":"2018","journal-title":"J. Hydrol."}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815223001585?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815223001585?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T14:05:30Z","timestamp":1715868330000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815223001585"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":37,"alternative-id":["S1364815223001585"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2023.105772","relation":{},"ISSN":["1364-8152"],"issn-type":[{"value":"1364-8152","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Event-based decision support algorithm for real-time flood forecasting in urban drainage systems using machine learning modelling","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2023.105772","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"105772"}}