{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:25:26Z","timestamp":1740111926284,"version":"3.37.3"},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003621","name":"Ministry of Science, ICT and Future Planning","doi-asserted-by":"publisher","award":["2017R1E1A1A030 70345","2021R1A2C1014409","2021R1A6A1A10044950"],"id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.envsoft.2023.105653","type":"journal-article","created":{"date-parts":[[2023,2,20]],"date-time":"2023-02-20T10:47:27Z","timestamp":1676890047000},"page":"105653","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Reformulating land-use regression method as sign-constrained regularized regressions: Advantages and improvements"],"prefix":"10.1016","volume":"162","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3344-1609","authenticated-orcid":false,"given":"Soon-Sun","family":"Kwon","sequence":"first","affiliation":[]},{"given":"Hosik","family":"Choi","sequence":"additional","affiliation":[]},{"given":"Whanhee","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Yeonjin","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Hwan-Cheol","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7447-7045","authenticated-orcid":false,"given":"Woojoo","family":"Lee","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.envsoft.2023.105653_b1","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1002\/wics.101","article-title":"Principal component analysis","volume":"2","author":"Abdi","year":"2010","journal-title":"Wiley Interdiscip. Rev. Comput. Stat."},{"key":"10.1016\/j.envsoft.2023.105653_b2","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.scitotenv.2014.04.106","article-title":"Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran","volume":"488","author":"Amini","year":"2014","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2023.105653_b3","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.atmosenv.2013.02.037","article-title":"Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe\u2013the ESCAPE project","volume":"72","author":"Beelen","year":"2013","journal-title":"Atmos. Environ."},{"issue":"2","key":"10.1016\/j.envsoft.2023.105653_b4","doi-asserted-by":"crossref","DOI":"10.1214\/12-AOS1077","article-title":"Valid post-selection inference","volume":"41","author":"Berk","year":"2013","journal-title":"Ann. Statist."},{"issue":"7","key":"10.1016\/j.envsoft.2023.105653_b5","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1080\/136588197242158","article-title":"Mapping urban air pollution using GIS: A regression-based approach","volume":"11","author":"Briggs","year":"1997","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"10.1016\/j.envsoft.2023.105653_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.atmosenv.2016.11.066","article-title":"Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches","volume":"151","author":"Brokamp","year":"2017","journal-title":"Atmos. Environ."},{"issue":"32","key":"10.1016\/j.envsoft.2023.105653_b7","doi-asserted-by":"crossref","first-page":"5075","DOI":"10.1016\/j.atmosenv.2009.06.040","article-title":"A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada","volume":"43","author":"Crouse","year":"2009","journal-title":"Atmos. Environ."},{"issue":"11","key":"10.1016\/j.envsoft.2023.105653_b8","doi-asserted-by":"crossref","first-page":"5778","DOI":"10.1021\/es400156t","article-title":"Development of land use regression models for particle composition in twenty study areas in Europe","volume":"47","author":"De Hoogh","year":"2013","journal-title":"Environ. Sci. Technol."},{"issue":"2","key":"10.1016\/j.envsoft.2023.105653_b9","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/S0013-9351(05)80042-8","article-title":"Air pollution and daily mortality: Associations with particulates and acid aerosols","volume":"59","author":"Dockery","year":"1992","journal-title":"Environ. Res."},{"issue":"20","key":"10.1016\/j.envsoft.2023.105653_b10","doi-asserted-by":"crossref","first-page":"11195","DOI":"10.1021\/es301948k","article-title":"Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project","volume":"46","author":"Eeftens","year":"2012","journal-title":"Environ. Sci. Technol."},{"issue":"4","key":"10.1016\/j.envsoft.2023.105653_b11","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1080\/10618600.2018.1473777","article-title":"Algorithms for fitting the constrained lasso","volume":"27","author":"Gaines","year":"2018","journal-title":"J. Comput. Graph. Statist."},{"key":"10.1016\/j.envsoft.2023.105653_b12","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.scitotenv.2012.05.062","article-title":"Evaluation of land use regression models for NO2 in El Paso, Texas, USA","volume":"432","author":"Gonzales","year":"2012","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2023.105653_b13","series-title":"Oxford Textbook of Global Public Health","article-title":"Environmental exposure assessment: Modelling air pollution concentrations","author":"Gulliver","year":"2015"},{"issue":"1","key":"10.1016\/j.envsoft.2023.105653_b14","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1214\/aos\/1176324456","article-title":"Penalized discriminant analysis","volume":"23","author":"Hastie","year":"1995","journal-title":"Ann. Statist."},{"year":"2009","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2","author":"Hastie","key":"10.1016\/j.envsoft.2023.105653_b15"},{"year":"2015","series-title":"Statistical Learning with Sparsity: The Lasso and Generalizations","author":"Hastie","key":"10.1016\/j.envsoft.2023.105653_b16"},{"issue":"7","key":"10.1016\/j.envsoft.2023.105653_b17","doi-asserted-by":"crossref","first-page":"2422","DOI":"10.1021\/es0606780","article-title":"Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter","volume":"41","author":"Henderson","year":"2007","journal-title":"Environ. Sci. Technol."},{"issue":"2","key":"10.1016\/j.envsoft.2023.105653_b18","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1021\/es1023042","article-title":"Land use regression model for ultrafine particles in Amsterdam","volume":"45","author":"Hoek","year":"2011","journal-title":"Environ. Sci. Technol."},{"issue":"1","key":"10.1016\/j.envsoft.2023.105653_b19","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1080\/00401706.1970.10488634","article-title":"Ridge regression: Biased estimation for nonorthogonal problems","volume":"12","author":"Hoerl","year":"1970","journal-title":"Technometrics"},{"year":"2013","series-title":"Penalized and constrained regression","author":"James","key":"10.1016\/j.envsoft.2023.105653_b20"},{"issue":"6","key":"10.1016\/j.envsoft.2023.105653_b21","doi-asserted-by":"crossref","first-page":"1400","DOI":"10.4209\/aaqr.2018.12.0450","article-title":"Evaluation of different machine learning approaches to forecasting PM2. 5 mass concentrations","volume":"19","author":"Karimian","year":"2019","journal-title":"Aerosol Air Qual. Res."},{"issue":"3","key":"10.1016\/j.envsoft.2023.105653_b22","doi-asserted-by":"crossref","first-page":"404","DOI":"10.2166\/wh.2019.001","article-title":"Sign-constrained linear regression for prediction of microbe concentration based on water quality datasets","volume":"17","author":"Kato","year":"2019","journal-title":"J. Water Health"},{"issue":"3","key":"10.1016\/j.envsoft.2023.105653_b23","doi-asserted-by":"crossref","DOI":"10.1214\/15-AOS1371","article-title":"Exact post-selection inference, with application to the lasso","volume":"44","author":"Lee","year":"2016","journal-title":"Ann. Statist."},{"issue":"23","key":"10.1016\/j.envsoft.2023.105653_b24","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1002\/2017GL075710","article-title":"Estimating ground-level PM2. 5 by fusing satellite and station observations: A geo-intelligent deep learning approach","volume":"44","author":"Li","year":"2017","journal-title":"Geophys. Res. Lett."},{"issue":"1","key":"10.1016\/j.envsoft.2023.105653_b25","article-title":"Application of XGBoost algorithm in hourly PM2. 5 concentration prediction","volume":"113","author":"Pan","year":"2018","journal-title":"IOP Conf. Ser.: Earth Environ. Sci."},{"key":"10.1016\/j.envsoft.2023.105653_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.envint.2020.105827","article-title":"Comparison of machine learning and land use regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States","volume":"142","author":"Ren","year":"2020","journal-title":"Environ. Int."},{"issue":"4","key":"10.1016\/j.envsoft.2023.105653_b27","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1289\/ehp.1409164","article-title":"Desert dust outbreaks in southern Europe: contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions","volume":"124","author":"Stafoggia","year":"2016","journal-title":"Environ. Health Perspect."},{"issue":"20","key":"10.1016\/j.envsoft.2023.105653_b28","doi-asserted-by":"crossref","first-page":"11643","DOI":"10.1021\/es402156g","article-title":"Using building heights and street configuration to enhance intraurban PM10, NOx, and NO2 land use regression models","volume":"47","author":"Tang","year":"2013","journal-title":"Environ. Sci. Technol."},{"issue":"1","key":"10.1016\/j.envsoft.2023.105653_b29","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.envsoft.2023.105653_b30","doi-asserted-by":"crossref","first-page":"1456","DOI":"10.1214\/13-EJS815","article-title":"The lasso problem and uniqueness","volume":"7","author":"Tibshirani","year":"2013","journal-title":"Electron. J. Statist."},{"key":"10.1016\/j.envsoft.2023.105653_b31","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1016\/j.scitotenv.2016.11.160","article-title":"Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany","volume":"579","author":"Wolf","year":"2017","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2023.105653_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2021.104996","article-title":"Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan","volume":"139","author":"Wong","year":"2021","journal-title":"Environ. Model. Softw."},{"issue":"10","key":"10.1016\/j.envsoft.2023.105653_b33","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1136\/oem.2004.017012","article-title":"Short term effects of particulate matter on cause specific mortality: Effects of lags and modification by city characteristics","volume":"62","author":"Zeka","year":"2005","journal-title":"Occup. Environ. Med."},{"issue":"2","key":"10.1016\/j.envsoft.2023.105653_b34","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","article-title":"Regularization and variable selection via the elastic net","volume":"67","author":"Zou","year":"2005","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815223000397?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815223000397?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T14:01:44Z","timestamp":1715868104000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815223000397"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":34,"alternative-id":["S1364815223000397"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2023.105653","relation":{},"ISSN":["1364-8152"],"issn-type":[{"type":"print","value":"1364-8152"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Reformulating land-use regression method as sign-constrained regularized regressions: Advantages and improvements","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2023.105653","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105653"}}