{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T04:21:17Z","timestamp":1744777277156,"version":"3.37.3"},"reference-count":128,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["SK2021007"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71774130","71988101","72101197"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1016\/j.envsoft.2022.105329","type":"journal-article","created":{"date-parts":[[2022,1,17]],"date-time":"2022-01-17T04:32:23Z","timestamp":1642393943000},"page":"105329","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":35,"special_numbering":"C","title":["Air quality forecasting with artificial intelligence techniques: A scientometric and content analysis"],"prefix":"10.1016","volume":"149","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8466-970X","authenticated-orcid":false,"given":"Yanzhao","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3764-4200","authenticated-orcid":false,"given":"Ju-e","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3196-1459","authenticated-orcid":false,"given":"Shaolong","family":"Sun","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8999-9310","authenticated-orcid":false,"given":"Jianing","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5773-998X","authenticated-orcid":false,"given":"Shouyang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8704-8856","authenticated-orcid":false,"given":"Chengyuan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib1","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/S1364-8152(01)00077-9","article-title":"Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks","volume":"17","author":"Abdul-Wahab","year":"2002","journal-title":"Environ. Model. Software"},{"issue":"11","key":"10.1016\/j.envsoft.2022.105329_bib2","doi-asserted-by":"crossref","first-page":"6957","DOI":"10.1007\/s10661-011-2472-1","article-title":"Classification of air quality using fuzzy synthetic multiplication","volume":"184","author":"Abdullah","year":"2012","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.envsoft.2022.105329_bib3","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.jenvman.2015.12.012","article-title":"Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models","volume":"168","author":"Adams","year":"2016","journal-title":"J. Environ. Manag."},{"issue":"4","key":"10.1016\/j.envsoft.2022.105329_bib4","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.envsoft.2004.07.008","article-title":"Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area","volume":"21","author":"Agirre-Basurko","year":"2006","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2022.105329_bib5","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.jenvman.2017.03.001","article-title":"Scientific production on indoor air quality of environments used for physical exercise and sports practice: bibliometric analysis","volume":"196","author":"Andrade","year":"2017","journal-title":"J. Environ. Manag."},{"key":"10.1016\/j.envsoft.2022.105329_bib6","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.envpol.2017.05.079","article-title":"Probabilistic forecasting for extreme NO2 pollution episodes","volume":"229","author":"Aznarte","year":"2017","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib7","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1016\/j.envpol.2019.04.104","article-title":"Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5\/AOD relationship in eastern China using radiosonde data","volume":"251","author":"Bai","year":"2019","journal-title":"Environ. Pollut."},{"issue":"4","key":"10.1016\/j.envsoft.2022.105329_bib8","doi-asserted-by":"crossref","DOI":"10.3390\/ijerph15040780","article-title":"Air pollution forecasts: an overview","volume":"15","author":"Bai","year":"2018","journal-title":"Int. J. Environ. Res. Publ. Health"},{"issue":"13","key":"10.1016\/j.envsoft.2022.105329_bib9","doi-asserted-by":"crossref","first-page":"7233","DOI":"10.1021\/es400039u","article-title":"A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States","volume":"47","author":"Beckerman","year":"2013","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib10","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.rse.2018.12.002","article-title":"Impacts of snow and cloud covers on satellite-derived PM2.5 levels","volume":"221","author":"Bi","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib11","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.envsoft.2019.06.014","article-title":"A review of artificial neural network models for ambient air pollution prediction","volume":"119","author":"Cabaneros","year":"2019","journal-title":"Environ. Model. Software"},{"issue":"7","key":"10.1016\/j.envsoft.2022.105329_bib12","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1016\/j.techfore.2012.11.008","article-title":"An overview of the literature on technology roadmapping (TRM): contributions and trends","volume":"80","author":"Carvalho","year":"2013","journal-title":"Technol. Forecast. Soc. Change"},{"issue":"Suppl. 1","key":"10.1016\/j.envsoft.2022.105329_bib13","doi-asserted-by":"crossref","first-page":"5303","DOI":"10.1073\/pnas.0307513100","article-title":"Searching for intellectual turning points: progressive knowledge domain visualization","volume":"101","author":"Chen","year":"2004","journal-title":"Proc. Natl. Acad. Sci. U. S. A"},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib14","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1002\/asi.20317","article-title":"CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature","volume":"57","author":"Chen","year":"2006","journal-title":"J. Am. Soc. Inf. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1515\/jdis-2017-0006","article-title":"Science mapping: a systematic review of the literature","volume":"2","author":"Chen","year":"2017","journal-title":"J. Data Info. Sci."},{"issue":"7","key":"10.1016\/j.envsoft.2022.105329_bib16","doi-asserted-by":"crossref","first-page":"1386","DOI":"10.1002\/asi.21309","article-title":"The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis","volume":"61","author":"Chen","year":"2010","journal-title":"J. Am. Soc. Inf. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib17","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.atmosenv.2019.01.027","article-title":"Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China","volume":"202","author":"Chen","year":"2019","journal-title":"Atmos. Environ."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib18","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.ecolmodel.2005.01.008","article-title":"Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning","volume":"185","author":"Corani","year":"2005","journal-title":"Ecol. Model."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib19","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1007\/s11192-018-2782-y","article-title":"Bibliometric and review of the research on circular economy through the evolution of Chinese public policy","volume":"116","author":"Cui","year":"2018","journal-title":"Scientometrics"},{"issue":"D5","key":"10.1016\/j.envsoft.2022.105329_bib20","doi-asserted-by":"crossref","DOI":"10.1029\/2005JD006311","article-title":"Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction","volume":"111","author":"Delle Monache","year":"2006","journal-title":"J. Geophys. Res. Atmos."},{"issue":"13","key":"10.1016\/j.envsoft.2022.105329_bib21","doi-asserted-by":"crossref","first-page":"13103","DOI":"10.1007\/s11356-019-04482-x","article-title":"Bibliometric analysis of global research on air pollution and human health: 1998\u20132017","volume":"26","author":"Dhital","year":"2019","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.envsoft.2022.105329_bib22","doi-asserted-by":"crossref","first-page":"104909","DOI":"10.1016\/j.envint.2019.104909","article-title":"An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution","volume":"130","author":"Di","year":"2019","journal-title":"Environ. Int."},{"issue":"9","key":"10.1016\/j.envsoft.2022.105329_bib23","doi-asserted-by":"crossref","first-page":"4712","DOI":"10.1021\/acs.est.5b06121","article-title":"Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States","volume":"50","author":"Di","year":"2016","journal-title":"Environ. Sci. Technol."},{"issue":"35","key":"10.1016\/j.envsoft.2022.105329_bib24","doi-asserted-by":"crossref","first-page":"8331","DOI":"10.1016\/j.atmosenv.2008.07.020","article-title":"A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile","volume":"42","author":"D\u00edaz-Robles","year":"2008","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib25","doi-asserted-by":"crossref","first-page":"106620","DOI":"10.1016\/j.asoc.2020.106620","article-title":"A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting","volume":"96","author":"Du","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.envsoft.2022.105329_bib26","first-page":"61","article-title":"Accurate methods for the statistics of surprise and coincidence","volume":"19","author":"Dunning","year":"1993","journal-title":"Comput. Ling."},{"key":"10.1016\/j.envsoft.2022.105329_bib27","first-page":"1","article-title":"A review of machine learning for big data analytics: bibliometric approach","author":"El-Alfy","year":"2020","journal-title":"Technol. Anal. Strat. Manag."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib28","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/S1093-0191(00)00042-3","article-title":"Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach","volume":"5","author":"Elkamel","year":"2001","journal-title":"Adv. Environ. Res."},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib29","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1007\/s10115-018-1177-y","article-title":"A Bayesian approach to forecasting daily air-pollutant levels","volume":"57","author":"Faganeli Pucer","year":"2018","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.envsoft.2022.105329_bib30","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.atmosenv.2019.02.002","article-title":"Neural network predictions of pollutant emissions from open burning of crop residues: application to air quality forecasts in southern China","volume":"204","author":"Feng","year":"2019","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib31","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.atmosenv.2015.02.030","article-title":"Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation","volume":"107","author":"Feng","year":"2015","journal-title":"Atmos. Environ."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib32","doi-asserted-by":"crossref","first-page":"35","DOI":"10.2307\/3033543","article-title":"A set of measures of centrality based on betweenness","volume":"40","author":"Freeman","year":"1977","journal-title":"Sociometry"},{"key":"10.1016\/j.envsoft.2022.105329_bib33","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.atmosenv.2018.03.027","article-title":"Artificial neural network model for ozone concentration estimation and Monte Carlo analysis","volume":"184","author":"Gao","year":"2018","journal-title":"Atmos. Environ."},{"issue":"14","key":"10.1016\/j.envsoft.2022.105329_bib34","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","article-title":"Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences","volume":"32","author":"Gardner","year":"1998","journal-title":"Atmos. Environ."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib35","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1016\/S1352-2310(98)00230-1","article-title":"Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London","volume":"33","author":"Gardner","year":"1999","journal-title":"Atmos. Environ."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib36","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/S1352-2310(99)00359-3","article-title":"Statistical surface ozone models: an improved methodology to account for non-linear behaviour","volume":"34","author":"Gardner","year":"2000","journal-title":"Atmos. Environ."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib37","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1002\/asi.10226","article-title":"Why do we need algorithmic historiography?","volume":"54","author":"Garfield","year":"2003","journal-title":"J. Am. Soc. Inf. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib38","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1016\/j.envint.2018.09.051","article-title":"The sensitivity of satellite-based PM2.5 estimates to its inputs: implications to model development in data-poor regions","volume":"121","author":"Geng","year":"2018","journal-title":"Environ. Int."},{"key":"10.1016\/j.envsoft.2022.105329_bib39","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1016\/j.scitotenv.2015.06.133","article-title":"An innovative approach for determination of air quality health index","volume":"533","author":"Gorai","year":"2015","journal-title":"Sci. Total Environ."},{"issue":"9","key":"10.1016\/j.envsoft.2022.105329_bib40","doi-asserted-by":"crossref","first-page":"6223","DOI":"10.5194\/acp-18-6223-2018","article-title":"Random forest meteorological normalisation models for Swiss PM10 trend analysis","volume":"18","author":"Grange","year":"2018","journal-title":"Atmos. Chem. Phys."},{"issue":"7","key":"10.1016\/j.envsoft.2022.105329_bib41","doi-asserted-by":"crossref","first-page":"1216","DOI":"10.1016\/j.atmosenv.2005.10.036","article-title":"Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece","volume":"40","author":"Grivas","year":"2006","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib42","article-title":"Knowledge discovery through Co-word analysis","volume":"48","author":"He","year":"1999","journal-title":"Libr. Trends"},{"issue":"33","key":"10.1016\/j.envsoft.2022.105329_bib43","doi-asserted-by":"crossref","first-page":"7561","DOI":"10.1016\/j.atmosenv.2008.05.057","article-title":"A review of land-use regression models to assess spatial variation of outdoor air pollution","volume":"42","author":"Hoek","year":"2008","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib44","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.bdr.2018.05.006","article-title":"Towards sustainable smart city by particulate matter prediction using urban big data, excluding expensive air pollution infrastructures","volume":"17","author":"Honarvar","year":"2019","journal-title":"Big Data Res."},{"issue":"18","key":"10.1016\/j.envsoft.2022.105329_bib45","doi-asserted-by":"crossref","first-page":"3279","DOI":"10.1016\/j.atmosenv.2005.01.050","article-title":"A neural network forecast for daily average PM10 concentrations in Belgium","volume":"39","author":"Hooyberghs","year":"2005","journal-title":"Atmos. Environ."},{"issue":"12","key":"10.1016\/j.envsoft.2022.105329_bib46","doi-asserted-by":"crossref","first-page":"6936","DOI":"10.1021\/acs.est.7b01210","article-title":"Estimating PM2.5 concentrations in the conterminous United States using the random forest approach","volume":"51","author":"Hu","year":"2017","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib47","doi-asserted-by":"crossref","first-page":"134094","DOI":"10.1016\/j.scitotenv.2019.134094","article-title":"Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale: implications for integrating non-regulatory measurements","volume":"697","author":"Huang","year":"2019","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib48","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1016\/j.envpol.2018.07.016","article-title":"Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain","volume":"242","author":"Huang","year":"2018","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib49","doi-asserted-by":"crossref","first-page":"1382","DOI":"10.1016\/j.jclepro.2019.01.058","article-title":"A systematic review of empirical methods for modelling sectoral carbon emissions in China","volume":"215","author":"Huang","year":"2019","journal-title":"J. Clean. Prod."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib50","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1016\/j.envsoft.2007.09.003","article-title":"From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao","volume":"23","author":"Ibarra-Berastegi","year":"2008","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2022.105329_bib51","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1016\/j.jenvman.2017.03.046","article-title":"A novel hybrid strategy for PM2.5 concentration analysis and prediction","volume":"196","author":"Jiang","year":"2017","journal-title":"J. Environ. Manag."},{"issue":"15\u201316","key":"10.1016\/j.envsoft.2022.105329_bib52","doi-asserted-by":"crossref","first-page":"4937","DOI":"10.1080\/00207543.2018.1471244","article-title":"A review of reverse logistics and closed loop supply chain management studies published in IJPR: a bibliometric and content analysis","volume":"57","author":"Kazemi","year":"2019","journal-title":"Int. J. Prod. Res."},{"issue":"4","key":"10.1016\/j.envsoft.2022.105329_bib53","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1023\/A:1024940629314","article-title":"Bursty and hierarchical structure in streams","volume":"7","author":"Kleinberg","year":"2003","journal-title":"Data Min. Knowl. Discov."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib54","doi-asserted-by":"crossref","first-page":"815","DOI":"10.1016\/S1352-2310(00)00385-X","article-title":"Neural networks and periodic components used in air quality forecasting","volume":"35","author":"Kolehmainen","year":"2001","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib55","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.annals.2016.10.006","article-title":"Bibliometric studies in tourism","volume":"61","author":"Koseoglu","year":"2016","journal-title":"Ann. Tourism Res."},{"issue":"32","key":"10.1016\/j.envsoft.2022.105329_bib56","doi-asserted-by":"crossref","first-page":"4539","DOI":"10.1016\/S1352-2310(03)00583-1","article-title":"Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki","volume":"37","author":"Kukkonen","year":"2003","journal-title":"Atmos. Environ."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib57","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1016\/j.envint.2007.12.020","article-title":"An online air pollution forecasting system using neural networks","volume":"34","author":"Kurt","year":"2008","journal-title":"Environ. Int."},{"key":"10.1016\/j.envsoft.2022.105329_bib58","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.trd.2018.11.015","article-title":"Predictive analytics of PM10 concentration levels using detailed traffic data","volume":"67","author":"Le\u0161nik","year":"2019","journal-title":"ransport. Res. Part D-Transport. Environ."},{"issue":"22","key":"10.1016\/j.envsoft.2022.105329_bib59","doi-asserted-by":"crossref","first-page":"3663","DOI":"10.1016\/j.atmosenv.2011.04.032","article-title":"A study on the potential applications of satellite data in air quality monitoring and forecasting","volume":"45","author":"Li","year":"2011","journal-title":"Atmos. Environ."},{"issue":"32","key":"10.1016\/j.envsoft.2022.105329_bib60","doi-asserted-by":"crossref","first-page":"24733","DOI":"10.1007\/s11356-017-0440-1","article-title":"A bibliometric analysis of research on haze during 2000\u20132016","volume":"24","author":"Li","year":"2017","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.envsoft.2022.105329_bib61","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1016\/j.scitotenv.2018.01.195","article-title":"Research and application of a novel hybrid air quality early-warning system: a case study in China","volume":"626","author":"Li","year":"2018","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib62","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.ssci.2015.09.004","article-title":"Output distributions and topic maps of safety related journals","volume":"82","author":"Li","year":"2016","journal-title":"Saf. Sci."},{"key":"10.1016\/j.envsoft.2022.105329_bib63","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.envint.2019.04.057","article-title":"Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions","volume":"128","author":"Li","year":"2019","journal-title":"Environ. Int."},{"key":"10.1016\/j.envsoft.2022.105329_bib64","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.apm.2018.07.052","article-title":"A dynamic evaluation framework for ambient air pollution monitoring","volume":"65","author":"Li","year":"2019","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.envsoft.2022.105329_bib65","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1016\/j.envpol.2017.08.114","article-title":"Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation","volume":"231","author":"Li","year":"2017","journal-title":"Environ. Pollut."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib66","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1007\/s11192-017-2421-z","article-title":"Sources of atmospheric pollution: a bibliometric analysis","volume":"112","author":"Li","year":"2017","journal-title":"Scientometrics"},{"key":"10.1016\/j.envsoft.2022.105329_bib67","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/j.omega.2018.11.005","article-title":"Bibliometric analysis for highly cited papers in operations research and management science from 2008 to 2017 based on Essential Science Indicators","volume":"88","author":"Liao","year":"2019","journal-title":"Omega-Int. J. Manage. Sci."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib68","doi-asserted-by":"crossref","first-page":"101045","DOI":"10.1016\/j.apr.2021.03.008","article-title":"Ensemble multifeatured deep learning models for air quality forecasting","volume":"12","author":"Lin","year":"2021","journal-title":"Atmos. Pollut. Res."},{"key":"10.1016\/j.envsoft.2022.105329_bib69","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.atmosenv.2019.04.002","article-title":"Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm","volume":"208","author":"Liu","year":"2019","journal-title":"Atmos. Environ."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib70","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1016\/j.chemosphere.2004.10.032","article-title":"Potential assessment of the \u201csupport vector machine\u201d method in forecasting ambient air pollutant trends","volume":"59","author":"Lu","year":"2005","journal-title":"Chemosphere"},{"key":"10.1016\/j.envsoft.2022.105329_bib71","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.envsoft.2018.06.004","article-title":"Time series analysis with explanatory variables: a systematic literature review","volume":"107","author":"Ma\u00e7aira","year":"2018","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2022.105329_bib72","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.indmarman.2019.07.014","article-title":"Industrial marketing management: bibliometric overview since its foundation","volume":"84","author":"Mart\u00ednez-L\u00f3pez","year":"2020","journal-title":"Ind. Market. Manag."},{"issue":"D21","key":"10.1016\/j.envsoft.2022.105329_bib73","doi-asserted-by":"crossref","DOI":"10.1029\/2005JD005858","article-title":"Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004","volume":"110","author":"McKeen","year":"2005","journal-title":"J. Geophys. Res. Atmos."},{"key":"10.1016\/j.envsoft.2022.105329_bib74","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.jclepro.2019.02.179","article-title":"Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling","volume":"221","author":"Mih\u0103i\u0163\u0103","year":"2019","journal-title":"J. Clean. Prod."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib75","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1186\/s40854-021-00286-6","article-title":"Shadow banking: a bibliometric and content analysis","volume":"7","author":"Nath","year":"2021","journal-title":"Financ. Innov."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib76","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.engappai.2004.02.002","article-title":"Evolving the neural network model for forecasting air pollution time series","volume":"17","author":"Niska","year":"2004","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.envsoft.2022.105329_bib77","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.jenvman.2017.02.071","article-title":"Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting","volume":"196","author":"Niu","year":"2017","journal-title":"J. Environ. Manag."},{"issue":"5","key":"10.1016\/j.envsoft.2022.105329_bib78","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1016\/j.envsoft.2004.03.010","article-title":"Neural network prediction model for fine particulate matter (PM2.5) on the US\u2013Mexico border in El Paso (Texas) and Ciudad Ju\u00e1rez (Chihuahua)","volume":"20","author":"Ordieres","year":"2005","journal-title":"Environ. Model. Software"},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib79","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1007\/s11192-019-03256-z","article-title":"Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization","volume":"121","author":"Pan","year":"2019","journal-title":"Scientometrics"},{"issue":"16","key":"10.1016\/j.envsoft.2022.105329_bib80","doi-asserted-by":"crossref","first-page":"2845","DOI":"10.1016\/j.atmosenv.2006.01.010","article-title":"An integrated neural network model for PM10 forecasting","volume":"40","author":"P\u00e9rez","year":"2006","journal-title":"Atmos. Environ."},{"issue":"8","key":"10.1016\/j.envsoft.2022.105329_bib81","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1016\/S1352-2310(99)00316-7","article-title":"Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile","volume":"34","author":"P\u00e9rez","year":"2000","journal-title":"Atmos. Environ."},{"issue":"11","key":"10.1016\/j.envsoft.2022.105329_bib82","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/su10113830","article-title":"Indoor air quality: a bibliometric study","volume":"10","author":"Pierpaoli","year":"2018","journal-title":"Sustainability"},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib83","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/S0377-2217(99)00069-7","article-title":"Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations","volume":"122","author":"Prybutok","year":"2000","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.envsoft.2022.105329_bib84","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.scitotenv.2019.01.333","article-title":"A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory","volume":"664","author":"Qi","year":"2019","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib85","doi-asserted-by":"crossref","first-page":"822","DOI":"10.1016\/j.atmosenv.2013.07.072","article-title":"Air quality prediction using optimal neural networks with stochastic variables","volume":"79","author":"Russo","year":"2013","journal-title":"Atmos. Environ."},{"issue":"12","key":"10.1016\/j.envsoft.2022.105329_bib86","doi-asserted-by":"crossref","DOI":"10.3390\/app8122570","article-title":"Machine learning approaches for outdoor air quality modelling: a systematic review","volume":"8","author":"Rybarczyk","year":"2018","journal-title":"Appl. Sci."},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib87","doi-asserted-by":"crossref","first-page":"1675","DOI":"10.1007\/s11192-018-2809-4","article-title":"Entrepreneurial cognition and socially situated approach: a systematic and bibliometric analysis","volume":"116","author":"Sassetti","year":"2018","journal-title":"Scientometrics"},{"issue":"23","key":"10.1016\/j.envsoft.2022.105329_bib88","doi-asserted-by":"crossref","first-page":"3237","DOI":"10.1016\/S1352-2310(03)00330-3","article-title":"A rigorous inter-comparison of ground-level ozone predictions","volume":"37","author":"Schlink","year":"2003","journal-title":"Atmos. Environ."},{"issue":"4","key":"10.1016\/j.envsoft.2022.105329_bib89","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1002\/asi.4630240406","article-title":"Co-citation in the scientific literature: a new measure of the relationship between two documents","volume":"24","author":"Small","year":"1973","journal-title":"J. Am. Soc. Inf. Sci."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib90","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.envsoft.2005.12.002","article-title":"Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations","volume":"22","author":"Sousa","year":"2007","journal-title":"Environ. Model. Software"},{"key":"10.1016\/j.envsoft.2022.105329_bib91","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.snb.2015.03.031","article-title":"Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide","volume":"215","author":"Spinelle","year":"2015","journal-title":"Sensor. Actuator. B Chem."},{"key":"10.1016\/j.envsoft.2022.105329_bib92","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.envint.2019.01.016","article-title":"Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013\u20132015, using a spatiotemporal land-use random-forest model","volume":"124","author":"Stafoggia","year":"2019","journal-title":"Environ. Int."},{"issue":"19","key":"10.1016\/j.envsoft.2022.105329_bib93","doi-asserted-by":"crossref","first-page":"4567","DOI":"10.1016\/j.atmosenv.2008.01.068","article-title":"A model inter-comparison study focussing on episodes with elevated PM10 concentrations","volume":"42","author":"Stern","year":"2008","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib94","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jenvman.2016.12.011","article-title":"Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm","volume":"188","author":"Sun","year":"2017","journal-title":"J. Environ. Manag."},{"issue":"9","key":"10.1016\/j.envsoft.2022.105329_bib95","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.1109\/LGRS.2019.2900270","article-title":"Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing","volume":"16","author":"Sun","year":"2019","journal-title":"Geosci. Rem. Sens. Lett. IEEE"},{"key":"10.1016\/j.envsoft.2022.105329_bib96","doi-asserted-by":"crossref","first-page":"116973","DOI":"10.1016\/j.atmosenv.2019.116973","article-title":"Comparison of GOCI and Himawari-8 aerosol optical depth for deriving full-coverage hourly PM2.5 across the Yangtze River Delta","volume":"217","author":"Tang","year":"2019","journal-title":"Atmos. Environ."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib97","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1007\/s11192-009-0146-3","article-title":"Software survey: VOSviewer, a computer program for bibliometric mapping","volume":"84","author":"van Eck","year":"2010","journal-title":"Scientometrics"},{"key":"10.1016\/j.envsoft.2022.105329_bib98","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.scitotenv.2016.12.018","article-title":"A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine","volume":"580","author":"Wang","year":"2017","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib99","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.jclepro.2019.06.201","article-title":"Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system","volume":"234","author":"Wang","year":"2019","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.envsoft.2022.105329_bib100","doi-asserted-by":"crossref","first-page":"109855","DOI":"10.1016\/j.jenvman.2019.109855","article-title":"An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting","volume":"255","author":"Wang","year":"2020","journal-title":"J. Environ. Manag."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib101","doi-asserted-by":"crossref","first-page":"13788","DOI":"10.1038\/s41598-019-50177-1","article-title":"Estimation of PM2.5 concentrations in China using a spatial back propagation neural network","volume":"9","author":"Wang","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.envsoft.2022.105329_bib102","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1016\/j.apenergy.2017.09.043","article-title":"Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model","volume":"208","author":"Wang","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.envsoft.2022.105329_bib103","doi-asserted-by":"crossref","first-page":"117200","DOI":"10.1016\/j.atmosenv.2019.117200","article-title":"An enhanced interval PM2.5 concentration forecasting model based on BEMD and MLPI with influencing factors","volume":"223","author":"Wang","year":"2020","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.envsoft.2022.105329_bib104","doi-asserted-by":"crossref","first-page":"112792","DOI":"10.1016\/j.envpol.2019.06.088","article-title":"Machine learning models accurately predict ozone exposure during wildfire events","volume":"254","author":"Watson","year":"2019","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib105","doi-asserted-by":"crossref","first-page":"1091","DOI":"10.1016\/j.scitotenv.2018.11.086","article-title":"A novel spatiotemporal convolutional long short-term neural network for air pollution prediction","volume":"654","author":"Wen","year":"2019","journal-title":"Sci. Total Environ."},{"year":"2018","series-title":"9 Out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action","author":"World Health Organization","key":"10.1016\/j.envsoft.2022.105329_bib106"},{"key":"10.1016\/j.envsoft.2022.105329_bib107","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.future.2018.08.051","article-title":"Pixel-wise depth based intelligent station for inferring fine-grained PM2.5","volume":"92","author":"Xi","year":"2019","journal-title":"Future Generat. Comput. Syst."},{"issue":"22","key":"10.1016\/j.envsoft.2022.105329_bib108","doi-asserted-by":"crossref","first-page":"13260","DOI":"10.1021\/acs.est.8b02917","article-title":"An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data","volume":"52","author":"Xiao","year":"2018","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.envsoft.2022.105329_bib109","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.ijpe.2018.08.003","article-title":"Supply chain finance: a systematic literature review and bibliometric analysis","volume":"204","author":"Xu","year":"2018","journal-title":"Int. J. Prod. Econ."},{"key":"10.1016\/j.envsoft.2022.105329_bib110","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/j.envpol.2017.01.043","article-title":"Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: a case study in China","volume":"223","author":"Xu","year":"2017","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib111","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1016\/j.envpol.2018.08.029","article-title":"Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5","volume":"242","author":"Xu","year":"2018","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib112","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.atmosenv.2016.10.046","article-title":"Air quality early-warning system for cities in China","volume":"148","author":"Xu","year":"2017","journal-title":"Atmos. Environ."},{"issue":"22","key":"10.1016\/j.envsoft.2022.105329_bib113","doi-asserted-by":"crossref","DOI":"10.3390\/ijerph16224482","article-title":"PM2.5 prediction with a novel multi-step-ahead forecasting model based on dynamic wind field distance","volume":"16","author":"Yang","year":"2019","journal-title":"Int. J. Environ. Res. Publ. Health"},{"issue":"13","key":"10.1016\/j.envsoft.2022.105329_bib114","doi-asserted-by":"crossref","first-page":"12284","DOI":"10.1007\/s11356-018-1723-x","article-title":"Trends on PM2.5 research, 1997\u20132016: a bibliometric study","volume":"25","author":"Yang","year":"2018","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.envsoft.2022.105329_bib115","doi-asserted-by":"crossref","first-page":"650","DOI":"10.1016\/j.ecolind.2019.03.031","article-title":"A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000","volume":"102","author":"Yang","year":"2019","journal-title":"Ecol. Indicat."},{"issue":"1","key":"10.1016\/j.envsoft.2022.105329_bib116","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1109\/JIOT.2017.2777820","article-title":"Real-time profiling of fine-grained air quality index distribution using UAV sensing","volume":"5","author":"Yang","year":"2018","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.envsoft.2022.105329_bib117","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.envres.2017.06.002","article-title":"A new air quality monitoring and early warning system: air quality assessment and air pollutant concentration prediction","volume":"158","author":"Yang","year":"2017","journal-title":"Environ. Res."},{"issue":"22","key":"10.1016\/j.envsoft.2022.105329_bib118","doi-asserted-by":"crossref","first-page":"13239","DOI":"10.1021\/acs.est.8b01921","article-title":"Machine learning approach to estimate hourly exposure to fine particulate matter for urban, rural, and remote populations during wildfire seasons","volume":"52","author":"Yao","year":"2018","journal-title":"Environ. Sci. Technol."},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib119","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1007\/s13042-019-01028-y","article-title":"Bibliometric analysis of support vector machines research trend: a case study in China","volume":"11","author":"Yu","year":"2020","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.envsoft.2022.105329_bib120","doi-asserted-by":"crossref","first-page":"113187","DOI":"10.1016\/j.envpol.2019.113187","article-title":"A novel multi-factor & multi-scale method for PM2.5 concentration forecasting","volume":"255","author":"Yuan","year":"2019","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.envsoft.2022.105329_bib121","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1016\/j.envpol.2018.09.052","article-title":"A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels","volume":"243","author":"Zhang","year":"2018","journal-title":"Environ. Pollut."},{"issue":"4","key":"10.1016\/j.envsoft.2022.105329_bib122","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3390\/atmos10040223","article-title":"A combined model based on feature selection and WOA for PM2.5 concentration forecasting","volume":"10","author":"Zhao","year":"2019","journal-title":"Atmosphere"},{"key":"10.1016\/j.envsoft.2022.105329_bib123","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.autcon.2018.12.013","article-title":"A scientometric analysis and critical review of construction related ontology research","volume":"101","author":"Zhong","year":"2019","journal-title":"Autom. ConStruct."},{"key":"10.1016\/j.envsoft.2022.105329_bib124","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.scitotenv.2014.07.051","article-title":"A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network","volume":"496","author":"Zhou","year":"2014","journal-title":"Sci. Total Environ."},{"issue":"2","key":"10.1016\/j.envsoft.2022.105329_bib125","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1007\/s11192-016-2187-8","article-title":"Visualizing the knowledge domain of sustainable development research between 1987 and 2015: a bibliometric analysis","volume":"110","author":"Zhu","year":"2017","journal-title":"Scientometrics"},{"key":"10.1016\/j.envsoft.2022.105329_bib126","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1016\/j.envpol.2018.09.025","article-title":"Optimal-combined model for air quality index forecasting: 5 cities in North China","volume":"243","author":"Zhu","year":"2018","journal-title":"Environ. Pollut."},{"issue":"12","key":"10.1016\/j.envsoft.2022.105329_bib127","doi-asserted-by":"crossref","DOI":"10.3390\/ijerph16122137","article-title":"Machine learning-based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment","volume":"16","author":"Zou","year":"2019","journal-title":"Int. J. Environ. Res. Publ. Health"},{"issue":"3","key":"10.1016\/j.envsoft.2022.105329_bib128","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1177\/1094428114562629","article-title":"Bibliometric methods in management and organization","volume":"18","author":"Zupic","year":"2014","journal-title":"Organ. Res. Methods"}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815222000354?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815222000354?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,30]],"date-time":"2023-03-30T07:33:55Z","timestamp":1680161635000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815222000354"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3]]},"references-count":128,"alternative-id":["S1364815222000354"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2022.105329","relation":{},"ISSN":["1364-8152"],"issn-type":[{"type":"print","value":"1364-8152"}],"subject":[],"published":{"date-parts":[[2022,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Air quality forecasting with artificial intelligence techniques: A scientometric and content analysis","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2022.105329","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105329"}}