{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T11:55:28Z","timestamp":1721908528043},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,2,1]],"date-time":"2017-02-01T00:00:00Z","timestamp":1485907200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"United Nations Environmental Program (UNEP)"},{"name":"Mitigation Action Plans and Scenarios (MAPS) International"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2017,2]]},"DOI":"10.1016\/j.envsoft.2016.11.007","type":"journal-article","created":{"date-parts":[[2016,11,24]],"date-time":"2016-11-24T15:46:22Z","timestamp":1480002382000},"page":"93-105","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Expert elicitation of autocorrelated time series with application to e3 (energy-environment-economic) forecasting models"],"prefix":"10.1016","volume":"88","author":[{"given":"Ian","family":"Durbach","sequence":"first","affiliation":[]},{"given":"Bruno","family":"Merven","sequence":"additional","affiliation":[]},{"given":"Bryce","family":"McCall","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.envsoft.2016.11.007_bib1","doi-asserted-by":"crossref","DOI":"10.1080\/14693062.2016.1150250","article-title":"Achieving development and mitigation objectives through a decarbonization development pathway in South Africa","author":"Altieri","year":"2016","journal-title":"Clim. Policy"},{"issue":"5","key":"10.1016\/j.envsoft.2016.11.007_bib2","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1080\/03610929808832149","article-title":"An elicitation method for multivariate normal distributions","volume":"27","author":"Al-Awadhi","year":"1998","journal-title":"Commun. Statistics Theory Methods"},{"key":"10.1016\/j.envsoft.2016.11.007_bib3","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1016\/j.envsoft.2011.07.012","article-title":"Cost effective control of air quality and greenhouse gases in Europe: modeling and policy applications","volume":"26","author":"Aman","year":"2011","journal-title":"Environ. Model. Softw."},{"issue":"3","key":"10.1016\/j.envsoft.2016.11.007_bib4","doi-asserted-by":"crossref","first-page":"034020","DOI":"10.1088\/1748-9326\/8\/3\/034020","article-title":"The future costs of nuclear power using multiple expert elicitations: effects of R&D and elicitation design","volume":"8","author":"Anadon","year":"2013","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.envsoft.2016.11.007_bib5","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1016\/j.apenergy.2015.06.053","article-title":"A\u00a0sequential approach to integrated energy modeling in South Africa","volume":"161","author":"Arndt","year":"2016","journal-title":"Appl. Energy"},{"key":"10.1016\/j.envsoft.2016.11.007_bib6","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1016\/S0301-4215(02)00139-8","article-title":"Global energy scenarios meeting stringent CO2 constraints \u2013 cost effective fuel choices in the transportation sector","volume":"31","author":"Azar","year":"2003","journal-title":"Energy Policy"},{"key":"10.1016\/j.envsoft.2016.11.007_bib7","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.eneco.2007.10.008","article-title":"Advanced solar R&D: combining economic analysis with expert elicitations to inform climate policy","volume":"31","author":"Baker","year":"2009","journal-title":"Energy Econ."},{"issue":"1","key":"10.1016\/j.envsoft.2016.11.007_bib8","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1093\/ije\/dyh299","article-title":"Regression to the mean: what it is and how to deal with it","volume":"34","author":"Barnett","year":"2005","journal-title":"Int. J. Epidemiol."},{"issue":"1\u20134","key":"10.1016\/j.envsoft.2016.11.007_bib9","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1023\/A:1016725902970","article-title":"Probability density decomposition for conditionally dependent random variables modeled by vines","volume":"32","author":"Bedford","year":"2001","journal-title":"Ann. Math. Artif. Intell."},{"issue":"3","key":"10.1016\/j.envsoft.2016.11.007_bib10","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0016-3287(03)00156-3","article-title":"Improving decision-making with scenario planning","volume":"36","author":"Chermack","year":"2004","journal-title":"Futures"},{"key":"10.1016\/j.envsoft.2016.11.007_bib11","series-title":"Highlights of the Expert Judgment Policy Symposium and Technical Workshop","author":"Cooke","year":"2006"},{"issue":"1","key":"10.1016\/j.envsoft.2016.11.007_bib12","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1146\/annurev.energy.27.122001.083425","article-title":"What can history teach us? A retrospective examination of long-term energy forecasts for the United States","volume":"27","author":"Craig","year":"2002","journal-title":"Annu. Rev. Energy Environ."},{"key":"10.1016\/j.envsoft.2016.11.007_bib13","series-title":"Integrated Resource Plan for Electricity 2010\u20132030","author":"Department of Energy","year":"2013"},{"key":"10.1016\/j.envsoft.2016.11.007_bib14","series-title":"Assumptions and Methodologies in the South African TIMES (SATIM) Energy Model","author":"Energy Research Centre","year":"2013"},{"issue":"1","key":"10.1016\/j.envsoft.2016.11.007_bib41","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s13398-011-0018-6","article-title":"Aggregating expert judgement","volume":"105","author":"French","year":"2011","journal-title":"Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas"},{"issue":"470","key":"10.1016\/j.envsoft.2016.11.007_bib42","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1198\/016214505000000105","article-title":"Statistical methods for eliciting probability distributions","volume":"100","author":"Garthwaite","year":"2005","journal-title":"J. Am. Stat. Assoc."},{"issue":"3","key":"10.1016\/j.envsoft.2016.11.007_bib15","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1177\/0272989X9601600312","article-title":"The psychology of good judgment frequency formats and simple algorithms","volume":"16","author":"Gigerenzer","year":"1996","journal-title":"Med. Decis. Mak."},{"key":"10.1016\/j.envsoft.2016.11.007_bib16","series-title":"Heuristics and Biases: the Psychology of Intuitive Judgment","author":"Gilovich","year":"2002"},{"issue":"2","key":"10.1016\/j.envsoft.2016.11.007_bib17","first-page":"118","article-title":"A\u00a0critical assessment of energy-economy-climate models for policy analysis","volume":"3","author":"Hedenus","year":"2013","journal-title":"J.\u00a0Appl. Econ. Bus. Res."},{"issue":"372","key":"10.1016\/j.envsoft.2016.11.007_bib18","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1080\/01621459.1980.10477562","article-title":"Interactive elicitation of opinion for a normal linear model","volume":"75","author":"Kadane","year":"1980","journal-title":"J.\u00a0Am. Stat. Assoc."},{"issue":"2","key":"10.1016\/j.envsoft.2016.11.007_bib19","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.ejor.2004.02.005","article-title":"An overview of the design and analysis of simulation experiments for sensitivity analysis","volume":"164","author":"Kleijnen","year":"2005","journal-title":"Eur. J. Operational Res."},{"key":"10.1016\/j.envsoft.2016.11.007_bib20","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1186\/1743-8977-6-19","article-title":"Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways","volume":"6","author":"Knol","year":"2009","journal-title":"Part. Fibre Toxicol."},{"key":"10.1016\/j.envsoft.2016.11.007_bib21","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1186\/1476-069X-9-19","article-title":"The use of expert elicitation in environmental health impact assessment: a seven step procedure","volume":"9","author":"Knol","year":"2010","journal-title":"Environ. Health"},{"key":"10.1016\/j.envsoft.2016.11.007_bib22","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.envsoft.2012.01.011","article-title":"The role of expert opinion in environmental modelling","volume":"36","author":"Krueger","year":"2012","journal-title":"Environ. Model. Softw."},{"issue":"1","key":"10.1016\/j.envsoft.2016.11.007_bib23","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/S0040-1625(01)00183-4","article-title":"Forecasting the diffusion of photovoltaic systems in southern Europe: a learning curve approach","volume":"70","author":"Masini","year":"2003","journal-title":"Technol. Forecast. Soc. Change"},{"key":"10.1016\/j.envsoft.2016.11.007_bib24","series-title":"Probabilistic Projections of Baseline Greenhouse Gas Emissions in South Africa to 2050","author":"Merven","year":"2015"},{"key":"10.1016\/j.envsoft.2016.11.007_bib25","series-title":"Uncertainty: a Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis","author":"Morgan","year":"1990"},{"issue":"17","key":"10.1016\/j.envsoft.2016.11.007_bib26","doi-asserted-by":"crossref","first-page":"3218","DOI":"10.1016\/j.enpol.2005.06.020","article-title":"Beyond the learning curve: factors influencing cost reductions in photovoltaics","volume":"34","author":"Nemet","year":"2006","journal-title":"Energy Policy"},{"issue":"3","key":"10.1016\/j.envsoft.2016.11.007_bib27","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1073\/pnas.0903797106","article-title":"Mitigation implications of mid-century targets that preserve long-term climate policy options","volume":"107","author":"O'Neill","year":"2010","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.envsoft.2016.11.007_bib28","series-title":"Uncertain Judgements: Eliciting Experts' Probabilities","author":"O'Hagan","year":"2006"},{"key":"10.1016\/j.envsoft.2016.11.007_bib29","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.energy.2013.08.059","article-title":"Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models","volume":"64","author":"Pietzcker","year":"2014","journal-title":"Energy"},{"issue":"35","key":"10.1016\/j.envsoft.2016.11.007_bib30","doi-asserted-by":"crossref","first-page":"13915","DOI":"10.1073\/pnas.1211452109","article-title":"Bayesian probabilistic population projection for all countries","volume":"109","author":"Raftery","year":"2012","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.envsoft.2016.11.007_bib43","series-title":"R: A Language and Environment for Statistical Computing","author":"R Core Team","year":"2015"},{"key":"10.1016\/j.envsoft.2016.11.007_bib31","doi-asserted-by":"crossref","first-page":"2930","DOI":"10.1016\/j.eneco.2008.06.005","article-title":"The value of technology advance in decarbonizing the US economy","volume":"30","author":"Richels","year":"2008","journal-title":"Energy Econ."},{"issue":"3","key":"10.1016\/j.envsoft.2016.11.007_bib32","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1007\/s10584-010-9868-8","article-title":"Climate policies as a hedge against the uncertainty on future oil supply","volume":"101","author":"Rozenberg","year":"2010","journal-title":"Clim. Change"},{"key":"10.1016\/j.envsoft.2016.11.007_bib33","series-title":"Expert Panels: Manual of Procedures & Guidelines","author":"RSC","year":"2004"},{"issue":"2","key":"10.1016\/j.envsoft.2016.11.007_bib34","first-page":"25","article-title":"Scenario planning: a tool for strategic thinking","volume":"36","author":"Schoemaker","year":"1995","journal-title":"Sloan Manag. Rev."},{"issue":"1","key":"10.1016\/j.envsoft.2016.11.007_bib35","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1504\/IJGENVI.2010.030566","article-title":"Imaclim-R: a modelling framework to simulate sustainable development pathways","volume":"10","author":"Sassi","year":"2010","journal-title":"Int. J. Glob. Environ. Issues"},{"key":"10.1016\/j.envsoft.2016.11.007_bib36","first-page":"1","article-title":"Some aspects of the spline smoothing approach to non-parametric regression curve fitting","author":"Silverman","year":"1985","journal-title":"J.\u00a0R. Stat. Soc. Ser. B Methodol."},{"issue":"4157","key":"10.1016\/j.envsoft.2016.11.007_bib37","doi-asserted-by":"crossref","first-page":"1124","DOI":"10.1126\/science.185.4157.1124","article-title":"Judgment under uncertainty: heuristics and biases","volume":"185","author":"Tversky","year":"1974","journal-title":"Science"},{"key":"10.1016\/j.envsoft.2016.11.007_bib38","series-title":"Decision Analysis and Behavioral Research","author":"Von Winterfeldt","year":"1993"},{"issue":"11","key":"10.1016\/j.envsoft.2016.11.007_bib39","doi-asserted-by":"crossref","first-page":"4987","DOI":"10.1016\/j.enpol.2009.06.062","article-title":"Technology learning for renewable energy: implications for South Africa's long-term mitigation scenarios","volume":"37","author":"Winkler","year":"2009","journal-title":"Energy Policy"},{"issue":"10","key":"10.1016\/j.envsoft.2016.11.007_bib40","doi-asserted-by":"crossref","first-page":"5818","DOI":"10.1016\/j.enpol.2011.06.009","article-title":"South Africa's greenhouse gas emissions under business-as-usual: the technical basis of \u2018Growth without Constraints\u2019 in the Long-Term Mitigation Scenarios","volume":"39","author":"Winkler","year":"2011","journal-title":"Energy Policy"}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815216306545?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815216306545?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,6]],"date-time":"2018-09-06T07:57:18Z","timestamp":1536220638000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815216306545"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,2]]},"references-count":43,"alternative-id":["S1364815216306545"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2016.11.007","relation":{},"ISSN":["1364-8152"],"issn-type":[{"value":"1364-8152","type":"print"}],"subject":[],"published":{"date-parts":[[2017,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Expert elicitation of autocorrelated time series with application to e3 (energy-environment-economic) forecasting models","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2016.11.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}