{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T08:51:05Z","timestamp":1726476665165},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,4,1]],"date-time":"2015-04-01T00:00:00Z","timestamp":1427846400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000266","name":"UK Engineering and Physical Sciences Research Council","doi-asserted-by":"crossref","award":["EP\/E003192\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Environmental Modelling & Software"],"published-print":{"date-parts":[[2015,4]]},"DOI":"10.1016\/j.envsoft.2014.12.021","type":"journal-article","created":{"date-parts":[[2015,1,21]],"date-time":"2015-01-21T13:45:16Z","timestamp":1421847916000},"page":"87-97","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":39,"special_numbering":"C","title":["A probabilistic methodology for quantifying, diagnosing and reducing model structural and predictive errors in short term water demand forecasting"],"prefix":"10.1016","volume":"66","author":[{"given":"Christopher J.","family":"Hutton","sequence":"first","affiliation":[]},{"given":"Zoran","family":"Kapelan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.envsoft.2014.12.021_bib1","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1061\/(ASCE)0733-9496(2008)134:2(119)","article-title":"Peak daily water demand forecast modeling using artificial neural networks","volume":"134","author":"Adamowski","year":"2008","journal-title":"J.\u00a0Water Resour. Plan. Manag."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib2","doi-asserted-by":"crossref","DOI":"10.1029\/2010WR009945","article-title":"Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada","volume":"48","author":"Adamowski","year":"2012","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.envsoft.2014.12.021_bib3","first-page":"1","article-title":"A\u00a0long-term forecast of water demand for a desalinated dependent city: case of Riyadh city in Saudi Arabia","author":"Almutaz","year":"2013","journal-title":"Desalin. Water Treat."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib4","doi-asserted-by":"crossref","first-page":"39","DOI":"10.2166\/hydro.2006.016","article-title":"A\u00a0short-term, pattern-based model for water-demand forecasting","volume":"9","author":"Alvisi","year":"2007","journal-title":"J.\u00a0Hydroinform."},{"issue":"4","key":"10.1016\/j.envsoft.2014.12.021_bib5","doi-asserted-by":"crossref","first-page":"424","DOI":"10.2166\/hydro.2010.089","article-title":"Pipe roughness calibration in water distribution systems using grey numbers","volume":"12","author":"Alvisi","year":"2010","journal-title":"J.\u00a0Hydroinform."},{"key":"10.1016\/j.envsoft.2014.12.021_bib6","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.ijforecast.2008.08.006","article-title":"A\u00a0smooth transition periodic autoregressive (STPAR) model for short-term load forecasting","volume":"24","author":"Amaral","year":"2008","journal-title":"Int. J. Forecast."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib7","first-page":"81","article-title":"Estimation of residential water demand: a state-of-the-art review","volume":"32","author":"Arbu\u00e9s","year":"2003","journal-title":"J.\u00a0Socio-Econ."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2166\/aqua.2013.063","article-title":"Better water quality and higher energy efficiency by using model predictive flow control at water supply systems","volume":"62","author":"Bakker","year":"2013","journal-title":"J.\u00a0Water Supply: Res. Technol. AQUA"},{"key":"10.1016\/j.envsoft.2014.12.021_bib9","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.envsoft.2013.06.012","article-title":"A\u00a0fully adaptive forecasting model for short-term drinking water demand","volume":"48","author":"Bakker","year":"2013","journal-title":"Environ. Model. Softw."},{"key":"10.1016\/j.envsoft.2014.12.021_bib10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.envsoft.2012.09.011","article-title":"Characterising performance of environmental models","volume":"40","author":"Bennett","year":"2013","journal-title":"Environ. Model. Softw."},{"issue":"17","key":"10.1016\/j.envsoft.2014.12.021_bib11","doi-asserted-by":"crossref","first-page":"3549","DOI":"10.1002\/hyp.7108","article-title":"On doing better hydrological science","volume":"22","author":"Beven","year":"2008","journal-title":"Hydrol. Process."},{"key":"10.1016\/j.envsoft.2014.12.021_bib12","doi-asserted-by":"crossref","first-page":"5355","DOI":"10.5194\/hessd-8-5355-2011","article-title":"On the colour and spin of epistemic error (and what we might do about it)","volume":"8","author":"Beven","year":"2011","journal-title":"Hydrol. Earth Syst. Sci. Discuss."},{"issue":"356","key":"10.1016\/j.envsoft.2014.12.021_bib13","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1080\/01621459.1976.10480949","article-title":"Science and Stat.","volume":"71","author":"Box","year":"1976","journal-title":"J.\u00a0Am. Stat. Assoc."},{"key":"10.1016\/j.envsoft.2014.12.021_bib14","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.jhydrol.2012.09.014","article-title":"A\u00a0formal statistical approach to representing uncertainty in rainfall\u2013runoff modelling with focus on residual analysis and probabilistic output evaluation\u2013Distinguishing simulation and prediction","volume":"472","author":"Breinholt","year":"2012","journal-title":"J.\u00a0Hydrol."},{"issue":"3","key":"10.1016\/j.envsoft.2014.12.021_bib15","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1016\/j.jhydrol.2009.06.005","article-title":"Ensemble flood forecasting: a review","volume":"375","author":"Cloke","year":"2009","journal-title":"J.\u00a0Hydrol."},{"issue":"2","key":"10.1016\/j.envsoft.2014.12.021_bib16","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1080\/15730620701754434","article-title":"Probabilistic prediction of urban water consumption using the SCEM-UA algorithm","volume":"5","author":"Cutore","year":"2008","journal-title":"Urban Water J."},{"key":"10.1016\/j.envsoft.2014.12.021_bib17","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.pce.2011.04.007","article-title":"Assessing uncertainties in urban drainage models","volume":"42\u201344","author":"Deletic","year":"2012","journal-title":"Phys. Chem. Earth, Parts A\/B\/C"},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib18","doi-asserted-by":"crossref","DOI":"10.1623\/hysj.50.1.45.56334","article-title":"Assessing uncertainties in a conceptual water balance model using Bayesian methodology\/Estimation bay\u00e9sienne des incertitudes au sein d'une mod\u00e9lisation conceptuelle de bilan hydrologique","volume":"50","author":"Engeland","year":"2005","journal-title":"Hydrol. Sci. J."},{"key":"10.1016\/j.envsoft.2014.12.021_bib19","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1214\/ss\/1177011136","article-title":"Inference from iterative simulation using multiple sequences","volume":"7","author":"Gelman","year":"1992","journal-title":"Stat. Sci."},{"key":"10.1016\/j.envsoft.2014.12.021_bib20","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1111\/j.2044-8317.2011.02037.x","article-title":"Philosophy and practice of Bayesian statistics","volume":"66","author":"Gelman","year":"2012","journal-title":"Br. J. Math. Stat. Psychol."},{"issue":"2","key":"10.1016\/j.envsoft.2014.12.021_bib21","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1061\/(ASCE)0733-9496(2008)134:2(138)","article-title":"Urban water demand forecasting with a dynamic artificial neural network model","volume":"134","author":"Ghiassi","year":"2008","journal-title":"J.\u00a0Water Resour. Plan. Manag."},{"issue":"18","key":"10.1016\/j.envsoft.2014.12.021_bib22","doi-asserted-by":"crossref","first-page":"3802","DOI":"10.1002\/hyp.6989","article-title":"Reconciling theory with observations: elements of a diagnostic approach to model evaluation","volume":"22","author":"Gupta","year":"2008","journal-title":"Hydrol. Process."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib23","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.jhydrol.2010.04.005","article-title":"Predictive models for forecasting hourly urban water demand","volume":"387","author":"Herrera","year":"2010","journal-title":"J.\u00a0Hydrol."},{"issue":"2","key":"10.1016\/j.envsoft.2014.12.021_bib24","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1061\/(ASCE)WR.1943-5452.0000325","article-title":"Dealing with uncertainty in water distribution system models: a framework for real-time modeling and data assimilation","volume":"140","author":"Hutton","year":"2014","journal-title":"J.\u00a0Water Resour. Plan. Manag."},{"issue":"11","key":"10.1016\/j.envsoft.2014.12.021_bib25","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)WR.1943-5452.0000412","article-title":"The application of formal and informal Bayesian methods for water distribution hydraulic model calibration","volume":"140","author":"Hutton","year":"2014","journal-title":"J.\u00a0Water Resour. Plan. Manag."},{"issue":"8","key":"10.1016\/j.envsoft.2014.12.021_bib26","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1061\/(ASCE)0733-9429(2007)133:8(927)","article-title":"Calibration of WDS hydraulic models using the Bayesian recursive procedure","volume":"133","author":"Kapelan","year":"2007","journal-title":"ASCE J. Hydraul. Eng."},{"issue":"1\u20132","key":"10.1016\/j.envsoft.2014.12.021_bib27","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.jhydrol.2006.05.010","article-title":"Towards a Bayesian total error analysis of conceptual rainfall-runoff models: characterising model error using storm-dependent parameters","volume":"331","author":"Kuczera","year":"2006","journal-title":"J.\u00a0Hydrol."},{"issue":"7","key":"10.1016\/j.envsoft.2014.12.021_bib28","doi-asserted-by":"crossref","DOI":"10.1029\/2006WR005756","article-title":"Uncertainty in hydrologic modeling: toward an integrated data assimilation framework","volume":"43","author":"Liu","year":"2007","journal-title":"Water Resour. Res."},{"issue":"1","key":"10.1016\/j.envsoft.2014.12.021_bib30","doi-asserted-by":"crossref","first-page":"65","DOI":"10.2166\/hydro.2006.018","article-title":"Optimizing the operation of the Valencia water-distribution network","volume":"9","author":"Martinez","year":"2007","journal-title":"J.\u00a0Hydroinform."},{"issue":"4","key":"10.1016\/j.envsoft.2014.12.021_bib31","doi-asserted-by":"crossref","DOI":"10.1029\/2008WR007288","article-title":"Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme","volume":"45","author":"McMillan","year":"2009","journal-title":"Water Resour. Res."},{"issue":"3","key":"10.1016\/j.envsoft.2014.12.021_bib32","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1061\/(ASCE)WR.1943-5452.0000030","article-title":"Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows","volume":"136","author":"Mounce","year":"2010","journal-title":"J.\u00a0Water Resour. Plan. Manag."},{"issue":"6","key":"10.1016\/j.envsoft.2014.12.021_bib33","first-page":"1628","article-title":"System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts","volume":"92","author":"Qi","year":"2011","journal-title":"J.\u00a0Environ. Manag."},{"key":"10.1016\/j.envsoft.2014.12.021_bib34","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.envsoft.2014.06.016","article-title":"Adaptive water demand forecasting for near real-time management of smart water distribution systems","volume":"60","author":"Romano","year":"2014","journal-title":"Environ. Model. Softw."},{"key":"10.1016\/j.envsoft.2014.12.021_bib35","doi-asserted-by":"crossref","first-page":"W10531","DOI":"10.1029\/2009WR008933","article-title":"A\u00a0formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors","volume":"46","author":"Schoups","year":"2010","journal-title":"Water Resour. Res."},{"issue":"3","key":"10.1016\/j.envsoft.2014.12.021_bib36","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/s11222-006-8769-1","article-title":"A\u00a0Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces","volume":"16","author":"Ter Braak","year":"2006","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.envsoft.2014.12.021_bib37","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1515\/IJNSNS.2009.10.3.273","article-title":"Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling","volume":"10","author":"Vrugt","year":"2009","journal-title":"Int. J. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.envsoft.2014.12.021_bib38","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/S0022-1694(01)00582-0","article-title":"Forecasting operational demand for an urban water supply zone","volume":"259","author":"Zhou","year":"2002","journal-title":"J.\u00a0Hydrol."}],"container-title":["Environmental Modelling & Software"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815214003788?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1364815214003788?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,29]],"date-time":"2019-10-29T19:27:25Z","timestamp":1572377245000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1364815214003788"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,4]]},"references-count":37,"alternative-id":["S1364815214003788"],"URL":"https:\/\/doi.org\/10.1016\/j.envsoft.2014.12.021","relation":{},"ISSN":["1364-8152"],"issn-type":[{"type":"print","value":"1364-8152"}],"subject":[],"published":{"date-parts":[[2015,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A probabilistic methodology for quantifying, diagnosing and reducing model structural and predictive errors in short term water demand forecasting","name":"articletitle","label":"Article Title"},{"value":"Environmental Modelling & Software","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.envsoft.2014.12.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}