{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,28]],"date-time":"2024-09-28T11:10:11Z","timestamp":1727521811260},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.engappai.2024.108970","type":"journal-article","created":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T20:48:14Z","timestamp":1721767694000},"page":"108970","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PB","title":["Cross-domain few-shot fault diagnosis based on meta-learning and domain adversarial graph convolutional network"],"prefix":"10.1016","volume":"136","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7644-7891","authenticated-orcid":false,"given":"Junwei","family":"Hu","sequence":"first","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhiqiang","family":"Tian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2024.108970_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105522","article-title":"Transfer learning based fault diagnosis of automobile dry clutch system","volume":"117","author":"Chakrapani","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"3","key":"10.1016\/j.engappai.2024.108970_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"6","key":"10.1016\/j.engappai.2024.108970_b3","doi-asserted-by":"crossref","first-page":"5948","DOI":"10.1109\/TMECH.2022.3192122","article-title":"Meta-learning with adaptive learning rates for few-shot fault diagnosis","volume":"27","author":"Chang","year":"2022","journal-title":"IEEE\/ASME Trans. Mechatronics"},{"key":"10.1016\/j.engappai.2024.108970_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116944","article-title":"Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network","volume":"200","author":"Cheng","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108970_b5","unstructured":"Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. 29."},{"key":"10.1016\/j.engappai.2024.108970_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3082264","article-title":"Intelligent fault diagnosis of rotary machines: Conditional auxiliary classifier GAN coupled with meta learning using limited data","volume":"70","author":"Dixit","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108970_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107646","article-title":"Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects","volume":"235","author":"Feng","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108970_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106829","article-title":"Similarity-based meta-learning network with adversarial domain adaptation for cross-domain fault identification","volume":"217","author":"Feng","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108970_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109605","article-title":"A review of vibration-based gear wear monitoring and prediction techniques","volume":"182","author":"Feng","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"issue":"9","key":"10.1016\/j.engappai.2024.108970_b10","doi-asserted-by":"crossref","first-page":"8749","DOI":"10.1109\/JSEN.2022.3160762","article-title":"Rolling bearing fault diagnosis in limited data scenarios using feature enhanced generative adversarial networks","volume":"22","author":"Fu","year":"2022","journal-title":"IEEE Sens. J."},{"issue":"59","key":"10.1016\/j.engappai.2024.108970_b11","first-page":"1","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2024.108970_b12","doi-asserted-by":"crossref","unstructured":"Gao, T., Han, X., Liu, Z., Sun, M., 2019. Hybrid attention-based prototypical networks for noisy few-shot relation classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 6407\u20136414.","DOI":"10.1609\/aaai.v33i01.33016407"},{"key":"10.1016\/j.engappai.2024.108970_b13","doi-asserted-by":"crossref","unstructured":"Ghifary, M., Kleijn, W.B., Zhang, M., 2014. Domain adaptive neural networks for object recognition. In: PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, QLD, Australia, December 1-5, 2014. Proceedings 13. pp. 898\u2013904.","DOI":"10.1007\/978-3-319-13560-1_76"},{"key":"10.1016\/j.engappai.2024.108970_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110958","article-title":"Novel joint transfer fine-grained metric network for cross-domain few-shot fault diagnosis","volume":"279","author":"Hu","year":"2023","journal-title":"Knowl.-Based Syst."},{"issue":"10","key":"10.1016\/j.engappai.2024.108970_b15","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ace46c","article-title":"Prior knowledge-based residuals shrinkage prototype networks for cross-domain fault diagnosis","volume":"34","author":"Hu","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108970_b16","first-page":"1","article-title":"Trustworthy artificial intelligence based on an explicable temporal feature network for industrial fault diagnosis","author":"Hu","year":"2023","journal-title":"Cogn. Comput."},{"issue":"6","key":"10.1016\/j.engappai.2024.108970_b17","doi-asserted-by":"crossref","first-page":"6298","DOI":"10.1109\/TIE.2021.3086707","article-title":"A multisource dense adaptation adversarial network for fault diagnosis of machinery","volume":"69","author":"Huang","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2024.108970_b18","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.sigpro.2018.12.005","article-title":"Multi-layer domain adaptation method for rolling bearing fault diagnosis","volume":"157","author":"Li","year":"2019","journal-title":"Signal Process."},{"key":"10.1016\/j.engappai.2024.108970_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104733","article-title":"Learning transfer feature representations for gas path fault diagnosis across gas turbine fleet","volume":"111","author":"Li","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2024.108970_b20","first-page":"1","article-title":"Domain adversarial graph convolutional network for fault diagnosis under variable working conditions","volume":"70","author":"Li","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108970_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108653","article-title":"The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study","volume":"168","author":"Li","year":"2022","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108970_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105656","article-title":"Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds","volume":"118","author":"Liang","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2024.108970_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109493","article-title":"Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples","volume":"252","author":"Lin","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108970_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106465","article-title":"Diagnosis of arrhythmias with few abnormal ECG samples using metric-based meta learning","volume":"153","author":"Liu","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.engappai.2024.108970_b25","first-page":"1","article-title":"Self-adaptation graph attention network via meta-learning for machinery fault diagnosis with few labeled data","volume":"71","author":"Long","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108970_b26","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2024.108970_b27","unstructured":"Oreshkin, B., Rodr\u00edguez L\u00f3pez, P., Lacoste, A., 2018. Tadam: Task dependent adaptive metric for improved few-shot learning. 31."},{"issue":"2","key":"10.1016\/j.engappai.2024.108970_b28","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.engappai.2024.108970_b29","article-title":"A multi-indicator fusion-based approach for fault feature selection and classification of rolling bearings","author":"Peng","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.engappai.2024.108970_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109884","article-title":"Deep discriminative transfer learning network for cross-machine fault diagnosis","volume":"186","author":"Qian","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"issue":"4","key":"10.1016\/j.engappai.2024.108970_b31","doi-asserted-by":"crossref","first-page":"2446","DOI":"10.1109\/TII.2018.2864759","article-title":"Highly accurate machine fault diagnosis using deep transfer learning","volume":"15","author":"Shao","year":"2018","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.engappai.2024.108970_b32","unstructured":"Snell, J., Swersky, K., Zemel, R., 2017a. Prototypical networks for few-shot learning. 30."},{"key":"10.1016\/j.engappai.2024.108970_b33","series-title":"Adv. Neural Inf. Process. Syst.","article-title":"Prototypical networks for few-shot learning","volume":"Vol. 30","author":"Snell","year":"2017"},{"key":"10.1016\/j.engappai.2024.108970_b34","unstructured":"Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al., 2016. Matching networks for one shot learning. 29."},{"issue":"2","key":"10.1016\/j.engappai.2024.108970_b35","doi-asserted-by":"crossref","first-page":"1474","DOI":"10.1109\/JSEN.2021.3131166","article-title":"Dual-attention generative adversarial networks for fault diagnosis under the class-imbalanced conditions","volume":"22","author":"Wang","year":"2021","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.engappai.2024.108970_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.107510","article-title":"Metric-based meta-learning model for few-shot fault diagnosis under multiple limited data conditions","volume":"155","author":"Wang","year":"2021","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108970_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108202","article-title":"Few-shot transfer learning for intelligent fault diagnosis of machine","volume":"166","author":"Wu","year":"2020","journal-title":"Measurement"},{"issue":"15","key":"10.1016\/j.engappai.2024.108970_b38","doi-asserted-by":"crossref","first-page":"8374","DOI":"10.1109\/JSEN.2019.2949057","article-title":"Knowledge transfer for rotary machine fault diagnosis","volume":"20","author":"Yan","year":"2019","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.engappai.2024.108970_b39","first-page":"9240","article-title":"Gnnexplainer: Generating explanations for graph neural networks","volume":"32","author":"Ying","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2024.108970_b40","first-page":"1","article-title":"Conditional adversarial domain adaptation with discrimination embedding for locomotive fault diagnosis","volume":"70","author":"Yu","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108970_b41","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.jmsy.2020.10.007","article-title":"Intelligent fault diagnosis of mechanical equipment under varying working condition via iterative matching network augmented with selective signal reuse strategy","volume":"57","author":"Zhang","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2024.108970_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105735","article-title":"A nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes under nonstationary conditions","volume":"119","author":"Zhang","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2024.108970_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109651","article-title":"Uncertainty-based contrastive prototype-matching network towards cross-domain fault diagnosis with small data","volume":"254","author":"Zhang","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108970_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106679","article-title":"Federated learning for machinery fault diagnosis with dynamic validation and self-supervision","volume":"213","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"9","key":"10.1016\/j.engappai.2024.108970_b45","doi-asserted-by":"crossref","first-page":"6203","DOI":"10.1109\/TII.2022.3154486","article-title":"Semisupervised momentum prototype network for gearbox fault diagnosis under limited labeled samples","volume":"18","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Ind. Inform."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762401128X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762401128X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,28]],"date-time":"2024-09-28T10:29:09Z","timestamp":1727519349000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095219762401128X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":45,"alternative-id":["S095219762401128X"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108970","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cross-domain few-shot fault diagnosis based on meta-learning and domain adversarial graph convolutional network","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108970","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108970"}}