{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T17:55:11Z","timestamp":1721930111660},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.engappai.2024.108700","type":"journal-article","created":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T22:04:16Z","timestamp":1717106656000},"page":"108700","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"title":["PG-YOLO: An efficient detection algorithm for pomegranate before fruit thinning"],"prefix":"10.1016","volume":"134","author":[{"given":"Jiuxin","family":"Wang","sequence":"first","affiliation":[]},{"given":"Man","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yurong","family":"Du","sequence":"additional","affiliation":[]},{"given":"Minghu","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hanlang","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Zhou","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yaoheng","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8915-8071","authenticated-orcid":false,"given":"Dingze","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Yucheng","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.engappai.2024.108700_bib1","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1111\/j.1753-4887.2008.00133.x","article-title":"Pomegranate juice: a heart-healthy fruit juice","volume":"67","author":"Basu","year":"2009","journal-title":"Nutr. Rev."},{"issue":"12","key":"10.1016\/j.engappai.2024.108700_bib2","doi-asserted-by":"crossref","first-page":"19043","DOI":"10.1007\/s11042-021-10704-7","article-title":"Fruits yield estimation using Faster R-CNN with MIoU","volume":"80","author":"Behera","year":"2021","journal-title":"Multimed. Tool. Appl."},{"key":"10.1016\/j.engappai.2024.108700_bib3","article-title":"Yolov4: optimal speed and accuracy of object detection","author":"Bochkovskiy","year":"2020","journal-title":"arXiv preprint arXiv:2004.10934"},{"key":"10.1016\/j.engappai.2024.108700_bib4","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107412","article-title":"Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion","volume":"202","author":"Chen","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.engappai.2024.108700_bib5","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/asmb.537","article-title":"A Tutorial on \u03bd-support vector machines","volume":"21","author":"Chen","year":"2005","journal-title":"Appl. Stoch Model Bus. Ind."},{"key":"10.1016\/j.engappai.2024.108700_bib6","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.patrec.2021.04.022","article-title":"Deep learning-based apple detection using a suppression mask R-CNN","volume":"147","author":"Chu","year":"2021","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.engappai.2024.108700_bib7","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2023.108304","article-title":"DSW-YOLO: a detection method for ground-planted strawberry fruits under different occlusion levels","volume":"214","author":"Du","year":"2023","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.engappai.2024.108700_bib8","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1007\/s11119-020-09754-y","article-title":"Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model","volume":"22","author":"Fu","year":"2020","journal-title":"Precis. Agric."},{"issue":"19","key":"10.1016\/j.engappai.2024.108700_bib9","doi-asserted-by":"crossref","first-page":"13895","DOI":"10.1007\/s00521-021-06029-z","article-title":"A detection algorithm for cherry fruits based on the improved YOLO-v4 model","volume":"35","author":"Gai","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.engappai.2024.108700_bib10","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107000","article-title":"A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard","volume":"197","author":"Gao","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib11","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105634","article-title":"Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN","volume":"176","author":"Gao","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"10","key":"10.1016\/j.engappai.2024.108700_bib12","doi-asserted-by":"crossref","first-page":"4581","DOI":"10.1021\/jf000404a","article-title":"Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing","volume":"48","author":"Gil","year":"2000","journal-title":"J. Agric. Food Chem."},{"key":"10.1016\/j.engappai.2024.108700_bib13","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Fast r-cnn","author":"Girshick","year":"2015"},{"key":"10.1016\/j.engappai.2024.108700_bib14","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014"},{"issue":"11","key":"10.1016\/j.engappai.2024.108700_bib15","doi-asserted-by":"crossref","first-page":"2015","DOI":"10.1177\/01423312221142564","article-title":"Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths","volume":"45","author":"Guan","year":"2023","journal-title":"Trans. Inst. Meas. Control"},{"key":"10.1016\/j.engappai.2024.108700_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105380","article-title":"Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot","volume":"172","author":"Jia","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib17","series-title":"2020 Chinese Control and Decision Conference (CCDC)","article-title":"A fruit detection algorithm based on r-fcn in natural scene","author":"Jian","year":"2020"},{"issue":"6","key":"10.1016\/j.engappai.2024.108700_bib18","doi-asserted-by":"crossref","DOI":"10.3390\/electronics9061023","article-title":"Detection and localization of overlapped fruits application in an apple harvesting robot","volume":"9","author":"Jiao","year":"2020","journal-title":"Electronics"},{"issue":"3","key":"10.1016\/j.engappai.2024.108700_bib19","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1023\/A:1014405730585","article-title":"Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer","volume":"71","author":"Kim","year":"2002","journal-title":"Breast Cancer Res. Treat."},{"key":"10.1016\/j.engappai.2024.108700_bib20","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105900","article-title":"A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment","volume":"180","author":"Li","year":"2021","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.engappai.2024.108700_bib21","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1007\/s11119-019-09662-w","article-title":"Fruit detection in natural environment using partial shape matching and probabilistic Hough transform","volume":"21","author":"Lin","year":"2019","journal-title":"Precis. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2023.106217","article-title":"Lightweight object detection algorithm for robots with improved YOLOv5","volume":"123","author":"Liu","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"1","key":"10.1016\/j.engappai.2024.108700_bib23","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s11119-022-09935-x","article-title":"Pineapple (Ananas comosus) fruit detection and localization in natural environment based on binocular stereo vision and improved YOLOv3 model","volume":"24","author":"Liu","year":"2022","journal-title":"Precis. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib24","doi-asserted-by":"crossref","first-page":"67923","DOI":"10.1109\/ACCESS.2019.2918313","article-title":"A detection method for apple fruits based on color and shape features","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.engappai.2024.108700_bib25","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.fshw.2022.07.033","article-title":"Characterization of the key aroma compounds in four varieties of pomegranate juice by gas chromatography-mass spectrometry, gas chromatography-olfactometry, odor activity value, aroma recombination, and omission tests","volume":"12","author":"Lu","year":"2023","journal-title":"Food Sci. Hum. Wellness"},{"issue":"20","key":"10.1016\/j.engappai.2024.108700_bib26","doi-asserted-by":"crossref","DOI":"10.3390\/app132011464","article-title":"A \u201chardware-friendly\u201d foreign object identification method for belt conveyors based on improved YOLOv8","volume":"13","author":"Luo","year":"2023","journal-title":"Appl. Sci."},{"key":"10.1016\/j.engappai.2024.108700_bib27","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","article-title":"Shufflenet v2: practical guidelines for efficient cnn architecture design","author":"Ma","year":"2018"},{"key":"10.1016\/j.engappai.2024.108700_bib28","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.biosystemseng.2016.01.007","article-title":"Detection of red and bicoloured apples on tree with an RGB-D camera","volume":"146","author":"Nguyen","year":"2016","journal-title":"Biosyst. Eng."},{"issue":"1","key":"10.1016\/j.engappai.2024.108700_bib29","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1080\/10942912.2019.1705851","article-title":"Quality detection of pomegranate fruit infected with fungal disease","volume":"23","author":"Nouri","year":"2020","journal-title":"Int. J. Food Prop."},{"key":"10.1016\/j.engappai.2024.108700_bib30","series-title":"2018 10th International Conference on Electrical and Computer Engineering (ICECE)","article-title":"A modified canny edge detection algorithm for fruit detection & classification","author":"Rabby","year":"2018"},{"issue":"6","key":"10.1016\/j.engappai.2024.108700_bib31","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.engappai.2024.108700_bib32","doi-asserted-by":"crossref","DOI":"10.3390\/s16081222","article-title":"DeepFruits: a fruit detection system using deep neural networks","volume":"16","author":"Sa","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2024.108700_bib33","article-title":"Grad-CAM: why did you say that?","author":"Selvaraju","year":"2016","journal-title":"arXiv preprint arXiv:1611.07450"},{"key":"10.1016\/j.engappai.2024.108700_bib34","doi-asserted-by":"crossref","DOI":"10.1109\/ISMODE53584.2022.9742740","article-title":"Image processing techniques for tomato segmentation applying K-means clustering and edge detection approach","author":"Septiarini","year":"2022","journal-title":"Inter, Seminar on Machine Learning, Optimization, and Data Science (ISMODE)"},{"key":"10.1016\/j.engappai.2024.108700_bib35","doi-asserted-by":"crossref","first-page":"125122","DOI":"10.1109\/ACCESS.2023.3330844","article-title":"DS-YOLOv8-Based object detection method for remote sensing images","volume":"11","author":"Shen","year":"2023","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.engappai.2024.108700_bib36","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/acb075","article-title":"Improved YOLOv3 model with feature map cropping for multi-scale road object detection","volume":"34","author":"Shen","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108700_bib37","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105933","article-title":"Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting","volume":"181","author":"Song","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib38","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","article-title":"Bottleneck transformers for visual recognition","author":"Srinivas","year":"2021"},{"issue":"6","key":"10.1016\/j.engappai.2024.108700_bib39","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1177\/09544062221128443","article-title":"Selective fruit harvesting: research, trends and developments towards fruit detection and localization \u2013 a review","volume":"237","author":"Suresh Kumar","year":"2022","journal-title":"Proc. IME C J. Mech. Eng. Sci."},{"key":"10.1016\/j.engappai.2024.108700_bib40","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118573","article-title":"Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision","volume":"211","author":"Tang","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108700_bib41","doi-asserted-by":"crossref","DOI":"10.1177\/01423312231225782","article-title":"Quantized iterative learning control of communication-constrained systems with encoding and decoding mechanism","author":"Tao","year":"2024","journal-title":"Trans. Inst. Meas. Control"},{"key":"10.1016\/j.engappai.2024.108700_bib42","series-title":"2017 4th NAFOSTED Conference on Information and Computer Science","article-title":"Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis","author":"Tran","year":"2017"},{"issue":"2","key":"10.1016\/j.engappai.2024.108700_bib43","first-page":"183","article-title":"A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: a survey","volume":"7","author":"Tripathi","year":"2020","journal-title":"Inf. Process. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib44","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2024.108700_bib45","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.biosystemseng.2021.08.015","article-title":"Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning","volume":"210","author":"Wang","year":"2021","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.engappai.2024.108700_bib46","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107194","article-title":"A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings","volume":"199","author":"Wang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib47","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.isatra.2023.07.043","article-title":"Q-learning based fault estimation and fault tolerant iterative learning control for MIMO systems","volume":"142","author":"Wang","year":"2023","journal-title":"ISA Trans."},{"key":"10.1016\/j.engappai.2024.108700_bib48","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106716","article-title":"Geometry-aware fruit grasping estimation for robotic harvesting in apple orchards","volume":"193","author":"Wang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib49","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107057","article-title":"DSE-YOLO: detail semantics enhancement YOLO for multi-stage strawberry detection","volume":"198","author":"Wang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib50","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2021.111808","article-title":"Apple stem\/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system","volume":"185","author":"Wang","year":"2022","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.engappai.2024.108700_bib51","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106443","article-title":"Segmentation of abnormal leaves of hydroponic lettuce based on DeepLabV3+ for robotic sorting","volume":"190","author":"Wu","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.engappai.2024.108700_bib52","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2023.107961","article-title":"A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments","volume":"211","author":"Xu","year":"2023","journal-title":"Comput. Electron. Agric."},{"issue":"7","key":"10.1016\/j.engappai.2024.108700_bib53","doi-asserted-by":"crossref","DOI":"10.3390\/agronomy13071824","article-title":"A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention","volume":"13","author":"Yang","year":"2023","journal-title":"Agronomy"},{"issue":"17","key":"10.1016\/j.engappai.2024.108700_bib54","doi-asserted-by":"crossref","DOI":"10.3390\/electronics12173664","article-title":"YOLO-drone: an optimized YOLOv8 network for tiny UAV object detection","volume":"12","author":"Zhai","year":"2023","journal-title":"Electronics"},{"key":"10.1016\/j.engappai.2024.108700_bib55","article-title":"mixup: beyond empirical risk minimization","author":"Zhang","year":"2017","journal-title":"arXiv preprint arXiv:1710.09412"},{"key":"10.1016\/j.engappai.2024.108700_bib56","doi-asserted-by":"crossref","DOI":"10.1093\/hr\/uhac003","article-title":"Deep-learning-based in-field citrus fruit detection and tracking","volume":"9","author":"Zhang","year":"2022","journal-title":"Horticulture Research"},{"key":"10.1016\/j.engappai.2024.108700_bib57","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2023.108592","article-title":"A fast and data-efficient deep learning framework for multi-class fruit blossom detection","volume":"217","author":"Zhou","year":"2024","journal-title":"Comput. Electron. Agric."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624008583?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624008583?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T03:05:07Z","timestamp":1718247907000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624008583"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":57,"alternative-id":["S0952197624008583"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108700","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PG-YOLO: An efficient detection algorithm for pomegranate before fruit thinning","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108700","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108700"}}