{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T08:27:13Z","timestamp":1726475233932},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.engappai.2024.108625","type":"journal-article","created":{"date-parts":[[2024,5,18]],"date-time":"2024-05-18T09:44:06Z","timestamp":1716025446000},"page":"108625","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"PF","title":["Bearing fault diagnosis based on high-confidence pseudo-labels and dual-view multi-adversarial sparse joint attention network under variable working conditions"],"prefix":"10.1016","volume":"133","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0032-0891","authenticated-orcid":false,"given":"Cailu","family":"Pan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7310-0921","authenticated-orcid":false,"given":"Zhiwu","family":"Shang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0804-5791","authenticated-orcid":false,"given":"Wanxiang","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5546-0501","authenticated-orcid":false,"given":"Fei","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-8721-8320","authenticated-orcid":false,"given":"Lutai","family":"Tang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2024.108625_bib1","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118802","article-title":"Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions","volume":"212","author":"An","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108625_bib2","doi-asserted-by":"crossref","first-page":"12044","DOI":"10.1109\/JSEN.2022.3173446","article-title":"Rolling bearing fault diagnosis method base on periodic sparse attention and LSTM","volume":"22","author":"An","year":"2022","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.engappai.2024.108625_bib3","doi-asserted-by":"crossref","first-page":"14387","DOI":"10.1109\/JSEN.2022.3182727","article-title":"Clustering-guided novel unsupervised domain adversarial network for partial transfer fault diagnosis of rotating machinery","volume":"22","author":"Cao","year":"2022","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.engappai.2024.108625_bib4","doi-asserted-by":"crossref","first-page":"13462","DOI":"10.1109\/TIE.2022.3144572","article-title":"Dual-path mixed-domain residual threshold networks for bearing fault diagnosis","volume":"69","author":"Chen","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2024.108625_bib5","doi-asserted-by":"crossref","DOI":"10.1109\/TMECH.2023.3243533","article-title":"An adaptive activation transfer learning approach for fault diagnosis","author":"Chen","year":"2023","journal-title":"IEEE ASME Trans. Mechatron."},{"key":"10.1016\/j.engappai.2024.108625_bib6","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.neucom.2020.05.040","article-title":"Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data","volume":"409","author":"Cheng","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2024.108625_bib7","article-title":"Deep learning-based modeling method for probabilistic LCF life prediction of turbine blisk","author":"Fei","year":"2023","journal-title":"Propul. Power Res."},{"key":"10.1016\/j.engappai.2024.108625_bib8","doi-asserted-by":"crossref","DOI":"10.3390\/aerospace10100875","article-title":"LCF lifetime reliability prediction of turbine blisks using marine predators algorithm-based kriging method","volume":"10","author":"Feng","year":"2023","journal-title":"Aerospace"},{"key":"10.1016\/j.engappai.2024.108625_bib9","article-title":"Domain-adversarial training of neural networks","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2024.108625_bib10","doi-asserted-by":"crossref","first-page":"7316","DOI":"10.1109\/TIE.2018.2877090","article-title":"Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data","volume":"66","author":"Guo","year":"2019","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2024.108625_bib11","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1109\/TIE.2021.3050382","article-title":"Modified deep autoencoder driven by multisource parameters for fault transfer prognosis of aeroengine","volume":"69","author":"He","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2024.108625_bib12","article-title":"Influence of one-way ANOVA and kruskal\u2013wallis based feature ranking on the performance of ML classifiers for bearing fault diagnosis","author":"Jamil","year":"2023","journal-title":"J. Vib. Eng. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib13","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.ymssp.2015.10.025","article-title":"Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data","volume":"72\u201373","author":"Jia","year":"2016","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib14","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.106962","article-title":"Residual joint adaptation adversarial network for intelligent transfer fault diagnosis","volume":"145","author":"Jiao","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib15","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2021.3136175","article-title":"Class-imbalance adversarial transfer learning network for cross-domain fault diagnosis with imbalanced data","volume":"71","author":"Kuang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108625_bib16","doi-asserted-by":"crossref","first-page":"4000","DOI":"10.1109\/JSEN.2023.3235370","article-title":"Domain conditioned joint adaptation network for intelligent bearing fault diagnosis across different positions and machines","volume":"23","author":"Kuang","year":"2023","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.engappai.2024.108625_bib17","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110345","article-title":"Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis","volume":"264","author":"Li","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib18","doi-asserted-by":"crossref","first-page":"8413","DOI":"10.1109\/JSEN.2020.2975286","article-title":"A deep adversarial transfer learning network for machinery emerging fault detection","volume":"20","author":"Li","year":"2020","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.engappai.2024.108625_bib19","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117716","article-title":"A novel intelligent fault diagnosis method of rotating machinery based on signal-to-image mapping and deep Gabor convolutional adaptive pooling network","volume":"205","author":"Li","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108625_bib20","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.sigpro.2018.12.005","article-title":"Multi-Layer domain adaptation method for rolling bearing fault diagnosis","volume":"157","author":"Li","year":"2019","journal-title":"Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib21","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/acd5f3","article-title":"Bearing failure diagnosis at time-varying speed based on adaptive clustered fractional Gabor transform","volume":"34","author":"Liu","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108139","article-title":"Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis","volume":"163","author":"Liu","year":"2022","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib23","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/acd6ac","article-title":"Category-aware dual adversarial domain adaptation model for rolling bearings fault diagnosis under variable conditions","volume":"34","author":"Lu","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib24","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.ymssp.2017.01.033","article-title":"Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings","volume":"92","author":"Miao","year":"2017","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib25","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110845","article-title":"Optimization of rolling bearing dynamic model based on improved golden jackal optimization algorithm and sensitive feature fusion","volume":"204","author":"Pan","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib26","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109884","article-title":"Deep discriminative transfer learning network for cross-machine fault diagnosis","volume":"186","author":"Qian","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib27","article-title":"A domain adversarial transfer model with inception and attention network for rolling bearing fault diagnosis under variable operating conditions","author":"Shang","year":"2022","journal-title":"J. Vib. Eng. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107386","article-title":"Hierarchical diagnosis of bearing faults using branch convolutional neural network considering noise interference and variable working conditions","volume":"230","author":"Su","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib29","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2023.106614","article-title":"Multi-sensor information fusion and coordinate attention-based fault diagnosis method and its interpretability research","volume":"124","author":"Tong","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2024.108625_bib30","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.110752","article-title":"A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis","volume":"191","author":"Wan","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2024.108625_bib31","article-title":"A hybrid intelligent rolling bearing fault diagnosis method combining WKN-BiLSTM and attention mechanism","volume":"34","author":"Wang","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib32","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101750","article-title":"A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis","volume":"54","author":"Wang","year":"2022","journal-title":"Adv. Eng. Inf."},{"key":"10.1016\/j.engappai.2024.108625_bib33","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac15dc","article-title":"Singular value penalization based adversarial domain adaptation for fault diagnosis of rolling bearings","volume":"32","author":"Wang","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2024.108625_bib34","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.knosys.2017.12.027","article-title":"Convolutional neural network-based hidden Markov models for rolling element bearing fault identification","volume":"144","author":"Wang","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib35","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105791","article-title":"Multiple local domains transfer network for equipment fault intelligent identification","volume":"120","author":"Wang","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2024.108625_bib36","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1016\/j.isatra.2022.04.026","article-title":"Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism","volume":"130","author":"Wu","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.engappai.2024.108625_bib37","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfailanal.2021.105385","article-title":"LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems","volume":"125","author":"Xia","year":"2021","journal-title":"Eng. Fail. Anal."},{"key":"10.1016\/j.engappai.2024.108625_bib38","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.112350","article-title":"A novel method for rotor fault diagnosis based on deep transfer learning with simulated samples","volume":"207","author":"Xiang","year":"2023","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2024.108625_bib39","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.107963","article-title":"A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels","volume":"161","author":"Zhang","year":"2021","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108625_bib40","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106679","article-title":"Federated learning for machinery fault diagnosis with dynamic validation and self-supervision","volume":"213","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib41","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.knosys.2022.110203","article-title":"A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains","volume":"262","author":"Zhao","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib42","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106974","article-title":"Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis","volume":"222","author":"Zhao","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108625_bib43","article-title":"A transfer learning method using high-quality pseudo labels for bearing fault diagnosis","volume":"72","author":"Zhu","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108625_bib44","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac1461","article-title":"Rolling bearing transfer fault diagnosis method based on adversarial variational autoencoder network","volume":"32","author":"Zou","year":"2021","journal-title":"Meas. Sci. Technol."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007838?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007838?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,22]],"date-time":"2024-05-22T19:39:04Z","timestamp":1716406744000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624007838"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":44,"alternative-id":["S0952197624007838"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108625","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bearing fault diagnosis based on high-confidence pseudo-labels and dual-view multi-adversarial sparse joint attention network under variable working conditions","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108625","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108625"}}