{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,29]],"date-time":"2024-06-29T05:14:20Z","timestamp":1719638060538},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100019035","name":"Science and Technology Program of Hubei Province","doi-asserted-by":"publisher","award":["2020BED003"],"id":[{"id":"10.13039\/501100019035","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51774219"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100019091","name":"Key Research and Development Program of Hunan Province of China","doi-asserted-by":"publisher","award":["2020BAB098"],"id":[{"id":"10.13039\/501100019091","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.engappai.2024.108616","type":"journal-article","created":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T11:21:46Z","timestamp":1716290506000},"page":"108616","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"title":["An infill sampling criterion based on improvement of probability and mapping crowding distance for expensive multi\/many-objective optimization"],"prefix":"10.1016","volume":"133","author":[{"given":"Yang","family":"Li","sequence":"first","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Songtao","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yuntao","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b1","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1162\/EVCO_a_00009","article-title":"HypE: An algorithm for fast hypervolume-based many-objective optimization","volume":"19","author":"Bader","year":"2011","journal-title":"Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110630","article-title":"Bayesian Co-evolutionary optimization based entropy search for high-dimensional many-objective optimization","volume":"274","author":"Bian","year":"2023","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b3","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1039\/B918972F","article-title":"Support vector machines for classification and regression","volume":"135","author":"Brereton","year":"2010","journal-title":"Analyst"},{"key":"10.1016\/j.engappai.2024.108616_b4","series-title":"Radial Basis Functions: Theory and Implementations","author":"Buhmann","year":"2003"},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b5","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1109\/TEVC.2016.2519378","article-title":"A reference vector guided evolutionary algorithm for many-objective optimization","volume":"20","author":"Cheng","year":"2016","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b6","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TEVC.2016.2622301","article-title":"A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization","volume":"22","author":"Chugh","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b7","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1007\/s10710-005-6164-x","article-title":"Solving multiobjective optimization problems using an artificial immune system","volume":"6","author":"Coello","year":"2005","journal-title":"Genet. Program. Evol. Mach."},{"key":"10.1016\/j.engappai.2024.108616_b8","series-title":"Evolutionary Algorithms for Solving Multi-Objective Problems","author":"Coello","year":"2007"},{"key":"10.1016\/j.engappai.2024.108616_b9","unstructured":"Cox, D.D., John, S., 1997. SDO: A Statistical Method for Global Optimization. In: IEEE International Conference on Systems."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b10","doi-asserted-by":"crossref","first-page":"676","DOI":"10.1109\/TEVC.2021.3113923","article-title":"Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems","volume":"26","author":"Cui","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b11","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1109\/TEVC.2013.2281535","article-title":"An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints","volume":"18","author":"Deb","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b12","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b13","series-title":"Evolutionary Multiobjective Optimization","first-page":"105","article-title":"Scalable test problems for evolutionary multiobjective optimization","author":"Deb","year":"2005"},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b14","doi-asserted-by":"crossref","first-page":"1012","DOI":"10.1109\/TCYB.2018.2794503","article-title":"Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems","volume":"49","author":"Guo","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b15","doi-asserted-by":"crossref","first-page":"2084","DOI":"10.1109\/TSMC.2020.3044418","article-title":"Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network","volume":"52","author":"Guo","year":"2022","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"issue":"6","key":"10.1016\/j.engappai.2024.108616_b16","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1109\/TEVC.2019.2899030","article-title":"A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi\/many-objective optimization","volume":"23","author":"Habib","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b17","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1109\/TEVC.2022.3152582","article-title":"Expensive multiobjective optimization by relation learning and prediction","volume":"26","author":"Hao","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b18","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TEVC.2005.861417","article-title":"A review of multiobjective test problems and a scalable test problem toolkit","volume":"10","author":"Huband","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b19","series-title":"Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimar\u00e3es, Portugal, March 29\u2013April 1, 2015. Proceedings, Part II 8","first-page":"110","article-title":"Modified distance calculation in generational distance and inverted generational distance","author":"Ishibuchi","year":"2015"},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b20","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1109\/TEVC.2013.2281534","article-title":"An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach","volume":"18","author":"Jain","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b21","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/S1006-706X(13)60052-7","article-title":"Multi-objective load distribution optimization for hot strip mills","volume":"20","author":"Jia","year":"2013","journal-title":"J. Iron Steel Res. Int."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b22","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.swevo.2011.05.001","article-title":"Surrogate-assisted evolutionary computation: Recent advances and future challenges","volume":"1","author":"Jin","year":"2011","journal-title":"Swarm Evol. Comput."},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b23","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1109\/TEVC.2018.2869001","article-title":"Data-driven evolutionary optimization: An overview and case studies","volume":"23","author":"Jin","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b24","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1023\/A:1012771025575","article-title":"A taxonomy of global optimization methods based on response surfaces","volume":"21","author":"Jones","year":"2001","journal-title":"J. Glob. Optim."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b25","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1023\/A:1008306431147","article-title":"Efficient global optimization of expensive black-box functions","volume":"13","author":"Jones","year":"1998","journal-title":"J. Global Optim."},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b26","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1016\/j.ejor.2007.10.013","article-title":"Kriging metamodeling in simulation: A review","volume":"192","author":"Kleijnen","year":"2009","journal-title":"European J. Oper. Res."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b27","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TEVC.2005.851274","article-title":"ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems","volume":"10","author":"Knowles","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2792984","article-title":"Many-objective evolutionary algorithms: A survey","volume":"48","author":"Li","year":"2015","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.engappai.2024.108616_b29","doi-asserted-by":"crossref","first-page":"9598","DOI":"10.1007\/s10489-022-03920-7","article-title":"Hybrid multi-objective optimization algorithm based on angle competition and neighborhood protection mechanism","volume":"53","author":"Li","year":"2023","journal-title":"Appl. Intell."},{"key":"10.1016\/j.engappai.2024.108616_b30","doi-asserted-by":"crossref","first-page":"15131","DOI":"10.1007\/s00500-021-06390-0","article-title":"Opposition-based multi-objective whale optimization algorithm with multi-leader guiding","volume":"25","author":"Li","year":"2021","journal-title":"Soft Comput."},{"key":"10.1016\/j.engappai.2024.108616_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108416","article-title":"A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization","volume":"242","author":"Li","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108616_b32","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.artint.2015.06.007","article-title":"Bi-goal evolution for many-objective optimization problems","volume":"228","author":"Li","year":"2015","journal-title":"Artificial Intelligence"},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b33","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1109\/TCYB.2019.2918087","article-title":"A many-objective evolutionary algorithm based on a two-round selection strategy","volume":"51","author":"Liang","year":"2021","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b34","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1007\/s40747-021-00362-5","article-title":"Adaptive dropout for high-dimensional expensive multiobjective optimization","volume":"8","author":"Lin","year":"2022","journal-title":"Complex Intell. Syst."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b35","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1080\/00224065.2004.11980252","article-title":"Response surface methodology: A retrospective and literature survey","volume":"36","author":"Myers","year":"2004","journal-title":"J. Qual. Technol."},{"key":"10.1016\/j.engappai.2024.108616_b36","series-title":"Prediction as a Candidate for Learning Deep Hierarchical Models of Data","author":"Palm","year":"2012"},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b37","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1109\/TEVC.2018.2802784","article-title":"A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization","volume":"23","author":"Pan","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b38","doi-asserted-by":"crossref","unstructured":"Panichella, A., 2019. An adaptive evolutionary algorithm based on non-Euclidean geometry for many-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 595\u2013603.","DOI":"10.1145\/3321707.3321839"},{"key":"10.1016\/j.engappai.2024.108616_b39","series-title":"2013 IEEE Congress on Evolutionary Computation","first-page":"1836","article-title":"R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization","author":"Phan","year":"2013"},{"key":"10.1016\/j.engappai.2024.108616_b40","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: An overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw."},{"issue":"6","key":"10.1016\/j.engappai.2024.108616_b41","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1109\/TEVC.2021.3073648","article-title":"A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization","volume":"25","author":"Song","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b42","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s12293-021-00351-8","article-title":"A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion","volume":"14","author":"Song","year":"2022","journal-title":"Memet. Comput."},{"issue":"6","key":"10.1016\/j.engappai.2024.108616_b43","doi-asserted-by":"crossref","first-page":"1581","DOI":"10.1109\/TEVC.2022.3159000","article-title":"Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems","volume":"26","author":"Sonoda","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b44","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1109\/TEVC.2017.2749619","article-title":"An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility","volume":"22","author":"Tian","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b45","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/MCI.2017.2742868","article-title":"PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]","volume":"12","author":"Tian","year":"2017","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"2","key":"10.1016\/j.engappai.2024.108616_b46","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1109\/TEVC.2018.2866854","article-title":"A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization","volume":"23","author":"Tian","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2023.101323","article-title":"A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization","volume":"80","author":"Tian","year":"2023","journal-title":"Swarm Evol. Comput."},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b48","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1109\/TEVC.2018.2869247","article-title":"Multiobjective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems","volume":"23","author":"Tian","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b49","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1109\/TCYB.2018.2883914","article-title":"Guiding evolutionary multiobjective optimization with generic front modeling","volume":"50","author":"Tian","year":"2020","journal-title":"IEEE Trans. Cybern."},{"issue":"4","key":"10.1016\/j.engappai.2024.108616_b50","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1109\/TEVC.2014.2350987","article-title":"Two_Arch2: An improved two-archive algorithm for many-objective optimization","volume":"19","author":"Wang","year":"2015","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b51","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.ins.2020.01.048","article-title":"An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization","volume":"519","author":"Wang","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2024.108616_b52","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.ins.2023.01.018","article-title":"A performance approximation assisted expensive many-objective evolutionary algorithm","volume":"625","author":"Wang","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2024.108616_b53","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.ins.2022.08.021","article-title":"An adaptive batch Bayesian optimization approach for expensive multi-objective problems","volume":"611","author":"Wang","year":"2022","journal-title":"Inform. Sci."},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b54","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1109\/TEVC.2012.2227145","article-title":"A grid-based evolutionary algorithm for many-objective optimization","volume":"17","author":"Yang","year":"2013","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b55","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1109\/TEVC.2021.3098257","article-title":"Expensive multiobjective evolutionary optimization assisted by dominance prediction","volume":"26","author":"Yuan","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"6","key":"10.1016\/j.engappai.2024.108616_b56","doi-asserted-by":"crossref","first-page":"956","DOI":"10.1109\/TEVC.2017.2697503","article-title":"Expected improvement matrix-based infill criteria for expensive multiobjective optimization","volume":"21","author":"Zhan","year":"2017","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"6","key":"10.1016\/j.engappai.2024.108616_b57","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: A multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.engappai.2024.108616_b58","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1109\/TEVC.2009.2033671","article-title":"Expensive multiobjective optimization by MOEA\/D with Gaussian process model","volume":"14","author":"Zhang","year":"2010","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b59","series-title":"2015 IEEE Congress on Evolutionary Computation","first-page":"2883","article-title":"A classification and Pareto domination based multiobjective evolutionary algorithm","author":"Zhang","year":"2015"},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b60","doi-asserted-by":"crossref","first-page":"3018","DOI":"10.1109\/TCYB.2020.3020727","article-title":"A neighborhood regression optimization algorithm for computationally expensive optimization problems","volume":"52","author":"Zhou","year":"2022","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.engappai.2024.108616_b61","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.swevo.2011.03.001","article-title":"Multiobjective evolutionary algorithms: A survey of the state of the art","volume":"1","author":"Zhou","year":"2011","journal-title":"Swarm Evol. Comput."},{"issue":"5","key":"10.1016\/j.engappai.2024.108616_b62","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/TEVC.2009.2021467","article-title":"Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm","volume":"13","author":"Zhou","year":"2009","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.engappai.2024.108616_b63","article-title":"SPEA2: Improving the strength Pareto evolutionary algorithm","volume":"103","author":"Zitzler","year":"2001","journal-title":"TIK-Rep."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007747?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007747?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,24]],"date-time":"2024-05-24T07:55:12Z","timestamp":1716537312000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624007747"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":63,"alternative-id":["S0952197624007747"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108616","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An infill sampling criterion based on improvement of probability and mapping crowding distance for expensive multi\/many-objective optimization","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108616","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108616"}}