{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T00:20:12Z","timestamp":1723162812387},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.engappai.2024.108598","type":"journal-article","created":{"date-parts":[[2024,6,14]],"date-time":"2024-06-14T10:15:57Z","timestamp":1718360157000},"page":"108598","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["MBRB: Micro-belief rule Base model based on cautious conjunctive rule for interpretable fault diagnosis"],"prefix":"10.1016","volume":"135","author":[{"given":"Chunchao","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0508-4648","authenticated-orcid":false,"given":"Zhijie","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Pengyun","family":"Ning","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Lian","sequence":"additional","affiliation":[]},{"given":"Zhichao","family":"Ming","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.engappai.2024.108598_bib1","doi-asserted-by":"crossref","first-page":"3506","DOI":"10.1109\/TIM.2019.2932162","article-title":"Robust interpretable deep learning for intelligent fault diagnosis of induction motors","volume":"69","author":"Abid","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108598_bib2","first-page":"1","article-title":"Interpretable neural network via algorithm unrolling for mechanical fault diagnosis","volume":"71","author":"An","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"5","key":"10.1016\/j.engappai.2024.108598_bib3","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1109\/TFUZZ.2020.2972207","article-title":"Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction","volume":"28","author":"Cao","year":"2020","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"11","key":"10.1016\/j.engappai.2024.108598_bib4","doi-asserted-by":"crossref","first-page":"3489","DOI":"10.1109\/TFUZZ.2020.3024024","article-title":"On the interpretability of belief rule-based expert systems","volume":"29","author":"Cao","year":"2021","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.engappai.2024.108598_bib5","doi-asserted-by":"crossref","DOI":"10.1016\/j.dss.2021.113558","article-title":"A new approximate belief rule base expert system for complex system modelling","volume":"150","author":"Cao","year":"2021","journal-title":"Decis. Support Syst."},{"key":"10.1016\/j.engappai.2024.108598_bib6","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.ins.2015.12.009","article-title":"Belief rule based expert system for classification problems with new rule activation and weight calculation procedures","volume":"336","author":"Chang","year":"2016","journal-title":"Inf. Sci."},{"issue":"12","key":"10.1016\/j.engappai.2024.108598_bib7","doi-asserted-by":"crossref","first-page":"11865","DOI":"10.1109\/JSEN.2022.3169341","article-title":"Fault diagnosis for limited annotation signals and strong noise based on interpretable attention mechanism","volume":"22","author":"Chen","year":"2022","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.engappai.2024.108598_bib8","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.artint.2007.05.008","article-title":"Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence","volume":"172","author":"Denoeux","year":"2008","journal-title":"Artif. Intell."},{"issue":"1","key":"10.1016\/j.engappai.2024.108598_bib9","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1145\/3359786","article-title":"Techniques for interpretable machine learning","volume":"63","author":"Du","year":"2020","journal-title":"Commun. ACM"},{"issue":"5","key":"10.1016\/j.engappai.2024.108598_bib10","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1109\/TFUZZ.2018.2878196","article-title":"A new belief rule base model with attribute reliability","volume":"27","author":"Feng","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"11","key":"10.1016\/j.engappai.2024.108598_bib11","doi-asserted-by":"crossref","first-page":"1774","DOI":"10.1109\/JAS.2020.1003399","article-title":"A new safety assessment method based on belief rule base with attribute reliability","volume":"8","author":"Feng","year":"2021","journal-title":"IEEE\/CAA J. Autom. Sinica."},{"issue":"6","key":"10.1016\/j.engappai.2024.108598_bib12","doi-asserted-by":"crossref","first-page":"3757","DOI":"10.1109\/TIE.2015.2417501","article-title":"A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches","volume":"62","author":"Gao","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"2","key":"10.1016\/j.engappai.2024.108598_bib13","first-page":"3768","article-title":"A survey of fault diagnosis and fault-tolerant techniques-part II: fault diagnosis with knowledge-based and hybrid\/active approaches","volume":"62","author":"Gao","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"6","key":"10.1016\/j.engappai.2024.108598_bib14","doi-asserted-by":"crossref","first-page":"3172","DOI":"10.1109\/JSEN.2019.2958787","article-title":"Interpretable convolutional neural network through layer-wise relevance propagation for machine fault diagnosis","volume":"20","author":"Grezmak","year":"2020","journal-title":"IEEE Sensor. J."},{"issue":"4","key":"10.1016\/j.engappai.2024.108598_bib15","doi-asserted-by":"crossref","first-page":"2905","DOI":"10.1016\/j.eswa.2007.05.020","article-title":"An improved fuzzy neural network based on T-S model","volume":"34","author":"Han","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108598_bib16","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1016\/j.ins.2020.08.068","article-title":"A distributed sensor-fault detection and diagnosis framework using machine learning","volume":"547","author":"Jan","year":"2021","journal-title":"Inf. Sci."},{"issue":"3","key":"10.1016\/j.engappai.2024.108598_bib17","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","article-title":"ANFIS: adaptive-network-based fuzzy inference system","volume":"23","author":"Jang","year":"1993","journal-title":"IEEE Trans. Syst. Man, Cybern."},{"key":"10.1016\/j.engappai.2024.108598_bib18","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1016\/j.ins.2023.02.010","article-title":"A new method for weighted fusion of evidence based on the unified trust distribution mechanism and the reward-punishment mechanism","volume":"629","author":"Ji","year":"2023","journal-title":"Inf. Sci."},{"issue":"6","key":"10.1016\/j.engappai.2024.108598_bib19","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.1002\/asjc.860","article-title":"Fault diagnosis of hydraulic servo system using the unscented Kalman filter","volume":"16","author":"Liu","year":"2014","journal-title":"Asian J. Control"},{"issue":"8","key":"10.1016\/j.engappai.2024.108598_bib20","doi-asserted-by":"crossref","first-page":"5127","DOI":"10.1109\/TII.2021.3126111","article-title":"Measuring explainability and trustworthiness of power quality disturbances classifiers using XAI\u2014explainable artificial intelligence","volume":"18","author":"Machlev","year":"2022","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.engappai.2024.108598_bib21","article-title":"A new interpretable fault diagnosis method based on belief rule base and probability table","author":"Ming","year":"2022","journal-title":"Chin. J. Aeronaut."},{"key":"10.1016\/j.engappai.2024.108598_bib22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3135317","article-title":"A concurrent fault diagnosis model via the evidential reasoning rule","volume":"71","author":"Ning","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"8","key":"10.1016\/j.engappai.2024.108598_bib23","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2024.108598_bib24","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s11721-007-0002-0","article-title":"Particle swarm optimization","volume":"1","author":"Poli","year":"1995","journal-title":"Swarm Intell"},{"issue":"3","key":"10.1016\/j.engappai.2024.108598_bib25","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/S0895-7177(03)90083-5","article-title":"Why the magic number seven plus or minus two","volume":"38","author":"Saaty","year":"2003","journal-title":"Math. Comput. Model."},{"issue":"5","key":"10.1016\/j.engappai.2024.108598_bib26","doi-asserted-by":"crossref","first-page":"2237","DOI":"10.1016\/j.ymssp.2006.09.007","article-title":"Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing","volume":"21","author":"Sugumaran","year":"2007","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2024.108598_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109833","article-title":"Fault diagnosis of mechanical equipment in high energy consumption industries in China: a review","volume":"186","author":"Sun","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"issue":"1","key":"10.1016\/j.engappai.2024.108598_bib28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JSYST.2021.3066337","article-title":"Cooperative and distributed multiobjective optimization for heterogeneous belief rule base","volume":"16","author":"Tan","year":"2022","journal-title":"IEEE Syst. J."},{"key":"10.1016\/j.engappai.2024.108598_bib29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3217869","article-title":"Signal-Transformer: a robust and interpretable method for rotating machinery intelligent fault diagnosis under variable operating conditions","volume":"71","author":"Tang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108598_bib30","doi-asserted-by":"crossref","first-page":"4027","DOI":"10.1109\/TCYB.2020.3015664","article-title":"A new evidential reasoning rule-based safety assessment method with sensor reliability for complex systems","volume":"52","author":"Tang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.engappai.2024.108598_bib31","doi-asserted-by":"crossref","first-page":"88439","DOI":"10.1109\/ACCESS.2021.3087505","article-title":"A robust observer for sensor faults estimation on n-DOF manipulator in constrained framework environment","volume":"9","author":"Truong","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2024.108598_bib32","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1109\/TSMC.2017.2759026","article-title":"A belief rule-based expert system for fault diagnosis of marine diesel engines","volume":"50","author":"Xu","year":"2020","journal-title":"IEEE Trans. Syst., Man, Cybern., Syst."},{"issue":"2","key":"10.1016\/j.engappai.2024.108598_bib33","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1109\/TSMCA.2005.851270","article-title":"Belief rule-base inference methodology using the evidential reasoning approach-RIMER","volume":"36","author":"Yang","year":"2006","journal-title":"IEEE Trans. Syst., Man, Cybern., A, Syst., Humans"},{"issue":"4","key":"10.1016\/j.engappai.2024.108598_bib34","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TSMCA.2007.897606","article-title":"Optimization models for training belief-rule-based systems","volume":"37","author":"Yang","year":"2007","journal-title":"IEEE Trans. Syst., Man, Cybern., A, Syst., Humans"},{"key":"10.1016\/j.engappai.2024.108598_bib35","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113161","article-title":"Ensemble belief rule base modeling with diverse attribute selection and cautious conjunctive rule for classification problems","volume":"146","author":"Yang","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108598_bib36","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113161","article-title":"Ensemble belief rule base modeling with diverse attribute selection and cautious conjunctive rule for classification problems","volume":"146","author":"Yang","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108598_bib37","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109597","article-title":"Knowledge and data dual-driven transfer network for industrial robot fault diagnosis","volume":"182","author":"Yin","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"issue":"4","key":"10.1016\/j.engappai.2024.108598_bib38","doi-asserted-by":"crossref","first-page":"592","DOI":"10.4218\/etrij.17.0116.0305","article-title":"Network intrusion detection based on directed acyclic graph and belief rule base","volume":"39","author":"Zhang","year":"2017","journal-title":"ETRI J."},{"key":"10.1016\/j.engappai.2024.108598_bib39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3127641","article-title":"A new interpretable learning method for fault diagnosis of rolling bearings","volume":"70","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2024.108598_bib40","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.110942","article-title":"An evidential reasoning-based fault detection method for multi-mode system","volume":"193","author":"Zhang","year":"2022","journal-title":"Measurement"},{"issue":"23","key":"10.1016\/j.engappai.2024.108598_bib41","first-page":"3091","article-title":"Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling","volume":"159","author":"Zhou","year":"2008","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.engappai.2024.108598_bib42","doi-asserted-by":"crossref","first-page":"4944","DOI":"10.1109\/TSMC.2019.2944893","article-title":"A survey of belief rule-base expert system","volume":"51","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Syst., Man, Cybern., Syst."},{"issue":"7","key":"10.1016\/j.engappai.2024.108598_bib43","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s11432-020-3001-7","article-title":"New health-state assessment model based on belief rule base with interpretability","volume":"64","author":"Zhou","year":"2021","journal-title":"Sci. China Inf. Sci."},{"key":"10.1016\/j.engappai.2024.108598_bib44","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109772","article-title":"Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations","volume":"185","author":"Zhou","year":"2023","journal-title":"Mech. Syst. Signal Process."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007565?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624007565?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T06:37:09Z","timestamp":1723099029000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624007565"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":44,"alternative-id":["S0952197624007565"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108598","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MBRB: Micro-belief rule Base model based on cautious conjunctive rule for interpretable fault diagnosis","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108598","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108598"}}