{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:23:09Z","timestamp":1740118989086,"version":"3.37.3"},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100012542","name":"Sichuan Province Science and Technology Support Program","doi-asserted-by":"publisher","award":["2022YFH0021","2022YFQ0014","2023ZYD0143","2023YFQ0020"],"id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62376230","62306196","62372315"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["YJ202245"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.engappai.2024.108198","type":"journal-article","created":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T02:45:29Z","timestamp":1710125129000},"page":"108198","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"PB","title":["Attribute granules-based object entropy for outlier detection in nominal data"],"prefix":"10.1016","volume":"133","author":[{"given":"Chang","family":"Liu","sequence":"first","affiliation":[]},{"given":"Dezhong","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Hongmei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhong","family":"Yuan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2024.108198_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101618","article-title":"Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening","volume":"60","author":"Alaverdyan","year":"2020","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.engappai.2024.108198_b2","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/TKDE.2012.234","article-title":"Rough sets, kernel set, and spatiotemporal outlier detection","volume":"26","author":"Albanese","year":"2012","journal-title":"IEEE Trans. Knowl Eng."},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b3","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1145\/335191.335388","article-title":"LOF: identifying density-based local outliers","volume":"29","author":"Breunig","year":"2000","journal-title":"Acm Sigmod Record"},{"key":"10.1016\/j.engappai.2024.108198_b4","series-title":"International Conference on Rough Sets and Current Trends in Computing","first-page":"283","article-title":"Outlier detection based on granular computing","author":"Chen","year":"2008"},{"issue":"12","key":"10.1016\/j.engappai.2024.108198_b5","doi-asserted-by":"crossref","first-page":"8745","DOI":"10.1016\/j.eswa.2010.06.040","article-title":"Neighborhood outlier detection","volume":"37","author":"Chen","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2024.108198_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113449","article-title":"A conversational recommender system for diagnosis using fuzzy rules","volume":"154","author":"Cordero","year":"2020","journal-title":"Expert Syst. Appl."},{"issue":"143","key":"10.1016\/j.engappai.2024.108198_b7","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1080\/14786448708628471","article-title":"Xli. on discordant observations","volume":"23","author":"Edgeworth","year":"1887","journal-title":"Lond. Edinb. Dublin Philos. Mag. J. Sci."},{"year":"1999","author":"Ganter","series-title":"Formal Concept Analysis: Mathematical Foundations","key":"10.1016\/j.engappai.2024.108198_b8"},{"key":"10.1016\/j.engappai.2024.108198_b9","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.ins.2021.07.031","article-title":"Incremental construction of three-way concept lattice for knowledge discovery in social networks","volume":"578","author":"Hao","year":"2021","journal-title":"Inform. Sci."},{"issue":"9\u201310","key":"10.1016\/j.engappai.2024.108198_b10","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1016\/S0167-8655(03)00003-5","article-title":"Discovering cluster-based local outliers","volume":"24","author":"He","year":"2003","journal-title":"Pattern Recognit. Lett."},{"issue":"11","key":"10.1016\/j.engappai.2024.108198_b11","first-page":"1478","article-title":"An integrated mining approach for classification and association rule based on concept lattice","volume":"11","author":"Hu","year":"2000","journal-title":"J. Softw."},{"key":"10.1016\/j.engappai.2024.108198_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110486","article-title":"A novel outlier detection approach based on formal concept analysis","volume":"268","author":"Hu","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108198_b13","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.knosys.2018.02.041","article-title":"Design a batched information retrieval system based on a concept-lattice-like structure","volume":"150","author":"Huang","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b14","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s10489-014-0591-4","article-title":"Outlier detection based on granular computing and rough set theory","volume":"42","author":"Jiang","year":"2015","journal-title":"Appl. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b15","first-page":"345","article-title":"Sequence outlier detection based on rough set theory","volume":"39","author":"Jiang","year":"2011","journal-title":"ACTA Electron. Sinica"},{"key":"10.1016\/j.engappai.2024.108198_b16","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.ins.2015.11.005","article-title":"Initialization of K-modes clustering using outlier detection techniques","volume":"332","author":"Jiang","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2024.108198_b17","series-title":"International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing","first-page":"79","article-title":"Outlier detection using rough set theory","author":"Jiang","year":"2005"},{"issue":"3","key":"10.1016\/j.engappai.2024.108198_b18","doi-asserted-by":"crossref","first-page":"4680","DOI":"10.1016\/j.eswa.2008.06.019","article-title":"Some issues about outlier detection in rough set theory","volume":"36","author":"Jiang","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.engappai.2024.108198_b19","doi-asserted-by":"crossref","first-page":"6338","DOI":"10.1016\/j.eswa.2010.02.087","article-title":"An information entropy-based approach to outlier detection in rough sets","volume":"37","author":"Jiang","year":"2010","journal-title":"Expert Syst. Appl."},{"issue":"7","key":"10.1016\/j.engappai.2024.108198_b20","doi-asserted-by":"crossref","first-page":"2151","DOI":"10.1016\/j.patcog.2015.01.023","article-title":"A relative decision entropy-based feature selection approach","volume":"48","author":"Jiang","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2024.108198_b21","doi-asserted-by":"crossref","first-page":"2483","DOI":"10.1007\/s13042-018-0884-8","article-title":"Outlier detection based on approximation accuracy entropy","volume":"10","author":"Jiang","year":"2019","journal-title":"Int. J. Mach. Learn. Cybern."},{"issue":"3","key":"10.1016\/j.engappai.2024.108198_b22","first-page":"209","article-title":"The study of the L-fuzzy concept lattice.","volume":"1","author":"Juandeaburre","year":"1994","journal-title":"Math. Soft Comput."},{"issue":"3","key":"10.1016\/j.engappai.2024.108198_b23","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s007780050006","article-title":"Distance-based outliers: algorithms and applications","volume":"8","author":"Knorr","year":"2000","journal-title":"VLDB J."},{"key":"10.1016\/j.engappai.2024.108198_b24","series-title":"Proceedings of the International Conference on Very Large Data Bases","first-page":"392","article-title":"Algorithms for mining distancebased outliers in large datasets","author":"Knox","year":"1998"},{"issue":"6","key":"10.1016\/j.engappai.2024.108198_b25","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1007\/s13042-013-0150-z","article-title":"On rule acquisition in decision formal contexts","volume":"4","author":"Li","year":"2013","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.engappai.2024.108198_b26","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/j.knosys.2014.08.020","article-title":"Rule-preserved object compression in formal decision contexts using concept lattices","volume":"71","author":"Li","year":"2014","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.engappai.2024.108198_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119400","article-title":"Fuzzy granular anomaly detection using Markov random walk","volume":"646","author":"Liu","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2024.108198_b28","series-title":"International Conference on Formal Concept Analysis","first-page":"372","article-title":"Addintent: A new incremental algorithm for constructing concept lattices","author":"Merwe","year":"2004"},{"issue":"6","key":"10.1016\/j.engappai.2024.108198_b29","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.knosys.2010.03.007","article-title":"Approaches to attribute reduction in concept lattices induced by axialities","volume":"23","author":"Mi","year":"2010","journal-title":"Knowl.-Based Syst."},{"issue":"5\u20136","key":"10.1016\/j.engappai.2024.108198_b30","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/S0020-0190(99)00108-8","article-title":"A fast algorithm for building lattices","volume":"71","author":"Nourine","year":"1999","journal-title":"Inf. Process. Lett."},{"key":"10.1016\/j.engappai.2024.108198_b31","series-title":"International Conference on Rough Sets and Knowledge Technology","first-page":"732","article-title":"Three-way formal concept analysis","author":"Qi","year":"2014"},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b32","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1145\/335191.335437","article-title":"Efficient algorithms for mining outliers from large data sets","volume":"29","author":"Ramaswamy","year":"2000","journal-title":"ACM SIGMOD Record"},{"key":"10.1016\/j.engappai.2024.108198_b33","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.ins.2016.03.018","article-title":"Attribute reduction in generalized one-sided formal contexts","volume":"378","author":"Shao","year":"2017","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b34","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/S0169-023X(02)00057-5","article-title":"Computing iceberg concept lattices with titanic","volume":"42","author":"Stumme","year":"2002","journal-title":"Data Knowl. Eng."},{"issue":"21","key":"10.1016\/j.engappai.2024.108198_b35","doi-asserted-by":"crossref","first-page":"16483","DOI":"10.1007\/s00500-020-04955-z","article-title":"Intelligent fuzzy rule-based approach with outlier detection for secured routing in WSN","volume":"24","author":"Thangaramya","year":"2020","journal-title":"Soft Comput."},{"key":"10.1016\/j.engappai.2024.108198_b36","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.knosys.2018.05.035","article-title":"Data reduction for boolean matrix factorization algorithms based on formal concept analysis","volume":"158","author":"Trnecka","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.engappai.2024.108198_b37","first-page":"66","article-title":"General and incremental algorithms of rule extraction based on concept lattice","volume":"22","author":"Wang","year":"1999","journal-title":"Chinese J. Comput."},{"key":"10.1016\/j.engappai.2024.108198_b38","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1016\/j.asoc.2018.12.029","article-title":"Outlier detection based on Gaussian process with application to industrial processes","volume":"76","author":"Wang","year":"2019","journal-title":"Appl. Soft Comput."},{"issue":"8","key":"10.1016\/j.engappai.2024.108198_b39","doi-asserted-by":"crossref","first-page":"2930","DOI":"10.1109\/TFUZZ.2021.3097811","article-title":"Feature selection with fuzzy-rough minimum classification error criterion","volume":"30","author":"Wang","year":"2021","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.engappai.2024.108198_b40","first-page":"1817","article-title":"Concept reduction and concept characteristics in formal concept analysis","volume":"50","author":"Wei","year":"2020","journal-title":"Sci. China (Inf. Sci.)"},{"key":"10.1016\/j.engappai.2024.108198_b41","series-title":"International Conference on Formal Concept Analysis","first-page":"445","article-title":"Restructuring lattice theory: an approach based on hierarchies of concepts","author":"Wille","year":"1982"},{"issue":"10","key":"10.1016\/j.engappai.2024.108198_b42","first-page":"1461","article-title":"Granular computing and knowledge reduction in formal contexts","volume":"21","author":"Wu","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"12","key":"10.1016\/j.engappai.2024.108198_b43","first-page":"1415","article-title":"Concept lattice and association rule discovery","volume":"37","author":"Xie","year":"2000","journal-title":"J. Comput. Res. Devel."},{"issue":"2","key":"10.1016\/j.engappai.2024.108198_b44","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.knosys.2010.09.003","article-title":"Finding key attribute subset in dataset for outlier detection","volume":"24","author":"Yang","year":"2011","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2024.108198_b45","series-title":"IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS\u201904, Vol. 2","first-page":"796","article-title":"Concept lattices in rough set theory","author":"Yao","year":"2004"},{"key":"10.1016\/j.engappai.2024.108198_b46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2020.10.017","article-title":"Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection","volume":"421","author":"Yuan","year":"2021","journal-title":"Fuzzy Sets and Systems"},{"issue":"8","key":"10.1016\/j.engappai.2024.108198_b47","doi-asserted-by":"crossref","first-page":"8399","DOI":"10.1109\/TCYB.2021.3058780","article-title":"Outlier detection based on fuzzy rough granules in mixed attribute data","volume":"52","author":"Yuan","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.engappai.2024.108198_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.109995","article-title":"Anomaly detection based on weighted fuzzy-rough density","volume":"134","author":"Yuan","year":"2023","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2024.108198_b49","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.inffus.2023.02.007","article-title":"MFGAD: Multi-fuzzy granules anomaly detection","volume":"95","author":"Yuan","year":"2023","journal-title":"Inf. Fusion"},{"issue":"6","key":"10.1016\/j.engappai.2024.108198_b50","doi-asserted-by":"crossref","first-page":"5964","DOI":"10.1109\/TSG.2019.2894334","article-title":"Descriptive analytics-based anomaly detection for cybersecure load forecasting","volume":"10","author":"Yue","year":"2019","journal-title":"IEEE Trans. Smart Grid"},{"issue":"15","key":"10.1016\/j.engappai.2024.108198_b51","doi-asserted-by":"crossref","first-page":"1434","DOI":"10.1016\/j.patrec.2009.07.016","article-title":"A concept lattice based outlier mining method in low-dimensional subspaces","volume":"30","author":"Zhang","year":"2009","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.engappai.2024.108198_b52","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1016\/j.future.2017.11.018","article-title":"Mining and updating association rules based on fuzzy concept lattice","volume":"82","author":"Zou","year":"2018","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.engappai.2024.108198_b53","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1016\/j.ins.2021.12.008","article-title":"A new parallel algorithm for computing formal concepts based on two parallel stages","volume":"586","author":"Zou","year":"2022","journal-title":"Inform. Sci."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624003567?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197624003567?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T00:55:52Z","timestamp":1717289752000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197624003567"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":53,"alternative-id":["S0952197624003567"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108198","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Attribute granules-based object entropy for outlier detection in nominal data","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2024.108198","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108198"}}