{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T11:10:07Z","timestamp":1730632207759,"version":"3.28.0"},"reference-count":136,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2018A0303130169"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.engappai.2023.107568","type":"journal-article","created":{"date-parts":[[2023,11,26]],"date-time":"2023-11-26T11:46:29Z","timestamp":1700999189000},"page":"107568","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Hybrid resampling and weighted majority voting for multi-class anomaly detection on imbalanced malware and network traffic data"],"prefix":"10.1016","volume":"128","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1275-5983","authenticated-orcid":false,"given":"Liang","family":"Xue","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3411-7947","authenticated-orcid":false,"given":"Tianqing","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib1","first-page":"39","article-title":"Easy ensemmble with random forest to handle imbalanced data in classification","volume":"3","author":"Abdullah","year":"2020","journal-title":"J. Fundamental Mathemat. Appl."},{"issue":"24","key":"10.1016\/j.engappai.2023.107568_bib2","doi-asserted-by":"crossref","first-page":"3897","DOI":"10.1093\/bioinformatics\/btv480","article-title":"LncRNA-ID: Long non-coding RNA IDentification using balanced random forests","volume":"31","author":"Achawanantakun","year":"2015","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib3","first-page":"159","article-title":"Predicting compressive strength of concrete using histogram-based gradient boosting approach for rapid design of mixtures","volume":"56","author":"Al Adwan","year":"2023","journal-title":"Civ. Eng. Infrastruct. J."},{"year":"2017","author":"Albawi","series-title":"Understanding of a Convolutional Neural Network. 2017 International Conference on Engineering and Technology (ICET)","key":"10.1016\/j.engappai.2023.107568_bib4"},{"key":"10.1016\/j.engappai.2023.107568_bib5","doi-asserted-by":"crossref","first-page":"e523","DOI":"10.7717\/peerj-cs.523","article-title":"A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach","volume":"7","author":"Alhudhaif","year":"2021","journal-title":"PeerJ Computer Science"},{"year":"2013","author":"Amer","series-title":"Enhancing One-Class Support Vector Machines for Unsupervised Anomaly Detection. Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description","key":"10.1016\/j.engappai.2023.107568_bib6"},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib7","first-page":"1","article-title":"Variational autoencoder based anomaly detection using reconstruction probability","volume":"2","author":"An","year":"2015","journal-title":"Special Lecture on IE"},{"volume":"vol. 2022","year":"2022","key":"10.1016\/j.engappai.2023.107568_bib8"},{"key":"10.1016\/j.engappai.2023.107568_bib9","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.procs.2019.09.167","article-title":"The proposal of undersampling method for learning from imbalanced datasets","volume":"159","author":"Bach","year":"2019","journal-title":"Procedia Comput. Sci."},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib10","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","article-title":"A study of the behavior of several methods for balancing machine learning training data","volume":"6","author":"Batista","year":"2004","journal-title":"ACM SIGKDD explorations newsletter"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib11","first-page":"104","article-title":"A KNN undersampling approach for data balancing","volume":"7","author":"Beckmann","year":"2015","journal-title":"J. Intell. Learn Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107568_bib12","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s11749-016-0481-7","article-title":"A random forest guided tour","volume":"25","author":"Biau","year":"2016","journal-title":"Test"},{"year":"2018","author":"Bonaccorso","series-title":"Machine Learning Algorithms","key":"10.1016\/j.engappai.2023.107568_bib13"},{"key":"10.1016\/j.engappai.2023.107568_bib14","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.engappai.2023.107568_bib15","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114629","article-title":"An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application","volume":"171","author":"Cai","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107568_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105730","article-title":"Interpretable anomaly detection with diffi: depth-based feature importance of isolation forest","volume":"119","author":"Carletti","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"year":"2018","author":"Chalapathy","series-title":"Anomaly Detection Using One-Class Neural Networks","key":"10.1016\/j.engappai.2023.107568_bib17"},{"key":"10.1016\/j.engappai.2023.107568_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113909","article-title":"Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble","volume":"165","author":"Chandra","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107568_bib19","doi-asserted-by":"crossref","DOI":"10.1016\/j.iot.2022.100568","article-title":"IoT anomaly detection methods and applications: a survey","volume":"19","author":"Chatterjee","year":"2022","journal-title":"Internet of Things"},{"key":"10.1016\/j.engappai.2023.107568_bib20","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artif. Intell. Res."},{"year":"2003","author":"Chawla","series-title":"SMOTEBoost: Improving Prediction of the Minority Class in Boosting. European Conference on Principles of Data Mining and Knowledge Discovery","key":"10.1016\/j.engappai.2023.107568_bib21"},{"issue":"9","key":"10.1016\/j.engappai.2023.107568_bib22","first-page":"17","article-title":"Classification of imbalance data based on KM-SMOTE algorithm and random forest","volume":"25","author":"Chen","year":"2015","journal-title":"COMPUTE\uff32TECHNOLOGY AND DEVELOPMENT"},{"year":"2023","author":"Chen","series-title":"Privacy and Fairness in Federated Learning: on the Perspective of Trade-Off","key":"10.1016\/j.engappai.2023.107568_bib23"},{"key":"10.1016\/j.engappai.2023.107568_bib24","series-title":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","article-title":"Improving classification of imbalanced datasets based on km++ smote algorithm","author":"Chen","year":"2019"},{"key":"10.1016\/j.engappai.2023.107568_bib25","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neunet.2021.12.008","article-title":"UTRAD: anomaly detection and localization with U-transformer","volume":"147","author":"Chen","year":"2022","journal-title":"Neural Network."},{"key":"10.1016\/j.engappai.2023.107568_bib26","series-title":"Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining","article-title":"Xgboost: a scalable tree boosting system","author":"Chen","year":"2016"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib27","first-page":"1","article-title":"Xgboost: extreme gradient boosting","volume":"1","author":"Chen","year":"2015","journal-title":"R package version 0.4-2"},{"year":"2018","author":"Chen","series-title":"Autoencoder-based Network Anomaly Detection. 2018 Wireless Telecommunications Symposium (WTS)","key":"10.1016\/j.engappai.2023.107568_bib28"},{"year":"2019","author":"Cheng","series-title":"Outlier Detection Using Isolation Forest and Local Outlier Factor. Proceedings of the Conference on Research in Adaptive and Convergent Systems","key":"10.1016\/j.engappai.2023.107568_bib29"},{"year":"2022","series-title":"Malware Memory Analysis","key":"10.1016\/j.engappai.2023.107568_bib30"},{"year":"2022","series-title":"NSL-KDD Dataset","key":"10.1016\/j.engappai.2023.107568_bib31"},{"key":"10.1016\/j.engappai.2023.107568_bib32","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105775","article-title":"An innovative deep anomaly detection of building energy consumption using energy time-series images","volume":"119","author":"Copiaco","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.107568_bib33","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109083","article-title":"Multi-granularity relabeled under-sampling algorithm for imbalanced data","volume":"124","author":"Dai","year":"2022","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"10.1016\/j.engappai.2023.107568_bib34","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/TSMC.2020.3030792","article-title":"An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems","volume":"52","author":"Deng","year":"2020","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"key":"10.1016\/j.engappai.2023.107568_bib35","article-title":"Overlap versus imbalance","volume":"vol. 23","author":"Denil","year":"2010"},{"key":"10.1016\/j.engappai.2023.107568_bib36","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.patrec.2016.10.006","article-title":"Redundancy-driven modified Tomek-link based undersampling: a solution to class imbalance","volume":"93","author":"Devi","year":"2017","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.engappai.2023.107568_bib37","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11704-019-8208-z","article-title":"A survey on ensemble learning","volume":"14","author":"Dong","year":"2020","journal-title":"Front. Comput. Sci."},{"key":"10.1016\/j.engappai.2023.107568_bib38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2018.06.056","article-title":"Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE","volume":"465","author":"Douzas","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.engappai.2023.107568_bib39","first-page":"2016","article-title":"Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method","volume":"1","author":"Elhassan","year":"2016","journal-title":"Global J. Technol. Optim. S"},{"key":"10.1016\/j.engappai.2023.107568_bib40","article-title":"Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method","volume":"1","author":"Elhassan","year":"2016","journal-title":"Global J. Technol. Optim. S"},{"year":"2001","author":"Elkan","series-title":"The Foundations of Cost-Sensitive Learning. International Joint Conference on Artificial Intelligence","key":"10.1016\/j.engappai.2023.107568_bib41"},{"key":"10.1016\/j.engappai.2023.107568_bib42","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.patcog.2016.03.028","article-title":"High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning","volume":"58","author":"Erfani","year":"2016","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.engappai.2023.107568_bib43","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/j.neucom.2021.08.040","article-title":"Reinforced knowledge distillation: multi-class imbalanced classifier based on policy gradient reinforcement learning","volume":"463","author":"Fan","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.107568_bib44","series-title":"Learning from Imbalanced Data Sets","first-page":"197","article-title":"Imbalanced classification with multiple classes","author":"Fern\u00e1ndez","year":"2018"},{"volume":"vol. 10","year":"2018","author":"Fern\u00e1ndez","key":"10.1016\/j.engappai.2023.107568_bib45"},{"year":"2019","author":"Foster","series-title":"Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play","key":"10.1016\/j.engappai.2023.107568_bib46"},{"key":"10.1016\/j.engappai.2023.107568_bib47","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2018.12.003","article-title":"A comprehensive data level analysis for cancer diagnosis on imbalanced data","volume":"90","author":"Fotouhi","year":"2019","journal-title":"J. Biomed. Inf."},{"year":"1996","author":"Freund","series-title":"Experiments with a New Boosting Algorithm","key":"10.1016\/j.engappai.2023.107568_bib48"},{"key":"10.1016\/j.engappai.2023.107568_bib49","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Ann. Stat."},{"issue":"12","key":"10.1016\/j.engappai.2023.107568_bib50","doi-asserted-by":"crossref","first-page":"3460","DOI":"10.1016\/j.patcog.2013.05.006","article-title":"EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling","volume":"46","author":"Galar","year":"2013","journal-title":"Pattern Recogn."},{"year":"2009","author":"Garc\u00eda","series-title":"Index of Balanced Accuracy: A Performance Measure for Skewed Class Distributions. Iberian Conference on Pattern Recognition and Image Analysis","key":"10.1016\/j.engappai.2023.107568_bib51"},{"year":"2013","author":"Georgiou","series-title":"A Game-Theoretic Framework for Classifier Ensembles Using Weighted Majority Voting with Local Accuracy Estimates","key":"10.1016\/j.engappai.2023.107568_bib52"},{"year":"2019","author":"G\u00e9ron","series-title":"Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems","key":"10.1016\/j.engappai.2023.107568_bib53"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib54","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0152173","article-title":"A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data","volume":"11","author":"Goldstein","year":"2016","journal-title":"PLoS One"},{"year":"2019","author":"Guryanov","series-title":"Histogram-based Algorithm for Building Gradient Boosting Ensembles of Piecewise Linear Decision Trees. Analysis of Images, Social Networks and Texts","key":"10.1016\/j.engappai.2023.107568_bib55"},{"key":"10.1016\/j.engappai.2023.107568_bib56","series-title":"International conference on intelligent computing","first-page":"878","article-title":"August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning","author":"Han","year":"2005"},{"key":"10.1016\/j.engappai.2023.107568_bib57","series-title":"2018 IEEE International Conference on Information Reuse and Integration (IRI)","article-title":"The effects of random undersampling with simulated class imbalance for big data","author":"Hasanin","year":"2018"},{"key":"10.1016\/j.engappai.2023.107568_bib58","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.neucom.2016.12.062","article-title":"An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting","volume":"235","author":"Hassan","year":"2017","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.engappai.2023.107568_bib59","doi-asserted-by":"crossref","first-page":"349","DOI":"10.4310\/SII.2009.v2.n3.a8","article-title":"Multi-class adaboost","volume":"2","author":"Hastie","year":"2009","journal-title":"Stat. Interface"},{"key":"10.1016\/j.engappai.2023.107568_bib60","series-title":"2008 IEEE International Joint Conference on Neural Networks","article-title":"ADASYN: adaptive synthetic sampling approach for imbalanced learning","author":"He","year":"2008"},{"issue":"9","key":"10.1016\/j.engappai.2023.107568_bib61","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"year":"2013","author":"He","series-title":"Imbalanced Learning: Foundations, Algorithms, and Applications","key":"10.1016\/j.engappai.2023.107568_bib62"},{"issue":"5-6","key":"10.1016\/j.engappai.2023.107568_bib63","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1002\/sam.10061","article-title":"Roughly balanced bagging for imbalanced data","volume":"2","author":"Hido","year":"2009","journal-title":"Stat. Anal. Data Min.: The ASA Data Science Journal"},{"key":"10.1016\/j.engappai.2023.107568_bib64","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1007\/s12559-020-09764-y","article-title":"A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks","volume":"12","author":"Himeur","year":"2020","journal-title":"Cognitive Computation"},{"key":"10.1016\/j.engappai.2023.107568_bib65","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2021.116601","article-title":"Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives","volume":"287","author":"Himeur","year":"2021","journal-title":"Appl. Energy"},{"year":"1995","author":"Ho","series-title":"Random Decision Forests. Proceedings of 3rd International Conference on Document Analysis and Recognition","key":"10.1016\/j.engappai.2023.107568_bib66"},{"key":"10.1016\/j.engappai.2023.107568_bib67","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.ins.2022.11.019","article-title":"Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem","volume":"619","author":"Huang","year":"2023","journal-title":"Inf. Sci."},{"year":"2017","author":"Junsomboon","series-title":"Combining Over-sampling and Under-sampling Techniques for Imbalance Dataset. Proceedings of the 9th International Conference on Machine Learning and Computing","key":"10.1016\/j.engappai.2023.107568_bib68"},{"issue":"12","key":"10.1016\/j.engappai.2023.107568_bib69","doi-asserted-by":"crossref","first-page":"4263","DOI":"10.1109\/TCYB.2016.2606104","article-title":"A noise-filtered under-sampling scheme for imbalanced classification","volume":"47","author":"Kang","year":"2016","journal-title":"IEEE Trans. Cybern."},{"year":"2020","author":"Kim","series-title":"GAN-Based Anomaly Detection in Imbalance Problems","key":"10.1016\/j.engappai.2023.107568_bib70"},{"key":"10.1016\/j.engappai.2023.107568_bib71","series-title":"2018 IEEE International Conference on Big Data (Big Data)","article-title":"An encoding technique for CNN-based network anomaly detection","author":"Kim","year":"2018"},{"year":"2018","author":"Konno","series-title":"Cavity Filling: Pseudo-feature Generation for Multi-Class Imbalanced Data Problems in Deep Learning","key":"10.1016\/j.engappai.2023.107568_bib72"},{"key":"10.1016\/j.engappai.2023.107568_bib73","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s10462-011-9272-4","article-title":"Decision trees: a recent overview","volume":"39","author":"Kotsiantis","year":"2013","journal-title":"Artif. Intell. Rev."},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib74","doi-asserted-by":"crossref","first-page":"2179","DOI":"10.1109\/TDSC.2021.3050101","article-title":"Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca","volume":"19","author":"Kravchik","year":"2021","journal-title":"IEEE Trans. Dependable Secure Comput."},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib75","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s13748-016-0094-0","article-title":"Learning from imbalanced data: open challenges and future directions","volume":"5","author":"Krawczyk","year":"2016","journal-title":"Progress in Artificial Intelligence"},{"key":"10.1016\/j.engappai.2023.107568_bib76","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1016\/j.procs.2016.02.097","article-title":"Detection of obfuscation in java malware","volume":"78","author":"Kumar","year":"2016","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.engappai.2023.107568_bib77","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s10115-012-0586-6","article-title":"A weighted voting framework for classifiers ensembles","volume":"38","author":"Kuncheva","year":"2014","journal-title":"Knowl. Inf. Syst."},{"year":"2018","author":"Kwon","series-title":"An Empirical Study on Network Anomaly Detection Using Convolutional Neural Networks","key":"10.1016\/j.engappai.2023.107568_bib78"},{"year":"2001","author":"Laurikkala","series-title":"Improving Identification of Difficult Small Classes by Balancing Class Distribution. Conference on Artificial Intelligence in Medicine in Europe","key":"10.1016\/j.engappai.2023.107568_bib79"},{"key":"10.1016\/j.engappai.2023.107568_bib80","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.eswa.2018.01.008","article-title":"An overlap-sensitive margin classifier for imbalanced and overlapping data","volume":"98","author":"Lee","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107568_bib81","doi-asserted-by":"crossref","first-page":"2488","DOI":"10.1007\/s10489-020-01637-z","article-title":"Deep reinforcement learning for imbalanced classification","volume":"50","author":"Lin","year":"2020","journal-title":"Appl. Intell."},{"key":"10.1016\/j.engappai.2023.107568_bib82","series-title":"Cost-sensitive Learning and the Class Imbalance Problem","first-page":"231","author":"Ling","year":"2008"},{"year":"2009","author":"Liu","series-title":"Easyensemble and Feature Selection for Imbalance Data Sets. 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing","key":"10.1016\/j.engappai.2023.107568_bib83"},{"issue":"2","key":"10.1016\/j.engappai.2023.107568_bib84","first-page":"539","article-title":"Exploratory undersampling for class-imbalance learning","volume":"39","author":"Liu","year":"2008","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"3","key":"10.1016\/j.engappai.2023.107568_bib85","doi-asserted-by":"crossref","first-page":"663","DOI":"10.2166\/hydro.2023.102","article-title":"Water distribution network leak localization with histogram-based gradient boosting","volume":"25","author":"Marvin","year":"2023","journal-title":"J. Hydroinf."},{"key":"10.1016\/j.engappai.2023.107568_bib86","series-title":"Advanced Lectures on Machine Learning","first-page":"118","article-title":"An introduction to boosting and leveraging","author":"Meir","year":"2003"},{"year":"2020","author":"Mohammed","series-title":"Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 2020 11th International Conference on Information and Communication Systems (ICICS)","key":"10.1016\/j.engappai.2023.107568_bib87"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib88","doi-asserted-by":"crossref","first-page":"407","DOI":"10.3390\/electronics10040407","article-title":"A machine learning approach for anomaly detection in industrial control systems based on measurement data","volume":"10","author":"Mokhtari","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.engappai.2023.107568_bib89","series-title":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","article-title":"Review of random forest classification techniques to resolve data imbalance","author":"More","year":"2017"},{"year":"2016","author":"Moreo","series-title":"Distributional Random Oversampling for Imbalanced Text Classification. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval","key":"10.1016\/j.engappai.2023.107568_bib90"},{"key":"10.1016\/j.engappai.2023.107568_bib91","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2021.102994","article-title":"A new distributed architecture for evaluating AI-based security systems at the edge: network TON_IoT datasets","volume":"72","author":"Moustafa","year":"2021","journal-title":"Sustain. Cities Soc."},{"year":"2020","author":"Moustafa","series-title":"Federated TON_IoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","key":"10.1016\/j.engappai.2023.107568_bib92"},{"year":"2021","author":"Mqadi","series-title":"Solving Misclassification of the Credit Card Imbalance Problem Using Near Miss","key":"10.1016\/j.engappai.2023.107568_bib93"},{"key":"10.1016\/j.engappai.2023.107568_bib94","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2021\/7194728","article-title":"Solving misclassification of the credit card imbalance problem using near miss","volume":"2021","author":"Mqadi","year":"2021","journal-title":"Math. Probl Eng."},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib95","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1504\/IJKESDP.2011.039875","article-title":"Borderline over-sampling for imbalanced data classification","volume":"3","author":"Nguyen","year":"2011","journal-title":"Int. J. Knowl. Eng. Soft Data Paradigms"},{"key":"10.1016\/j.engappai.2023.107568_bib96","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2023.104767","article-title":"Comparison of histogram-based gradient boosting classification machine, random Forest, and deep convolutional neural network for pavement raveling severity classification","volume":"148","author":"Nhat-Duc","year":"2023","journal-title":"Autom. ConStruct."},{"year":"2015","author":"O'Shea","series-title":"An Introduction to Convolutional Neural Networks","key":"10.1016\/j.engappai.2023.107568_bib97"},{"issue":"6","key":"10.1016\/j.engappai.2023.107568_bib98","doi-asserted-by":"crossref","first-page":"2131","DOI":"10.1109\/TCBB.2019.2911071","article-title":"XGBoost model for chronic kidney disease diagnosis","volume":"17","author":"Ogunleye","year":"2019","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf"},{"year":"2021","author":"Oladunni","series-title":"COVID-19 County Level Severity Classification with Imbalanced Dataset: A NearMiss Under-sampling Approach","key":"10.1016\/j.engappai.2023.107568_bib99"},{"key":"10.1016\/j.engappai.2023.107568_bib100","series-title":"2015 IEEE International Conference on Information Reuse and Integration","article-title":"Using random undersampling to alleviate class imbalance on tweet sentiment data","author":"Prusa","year":"2015"},{"key":"10.1016\/j.engappai.2023.107568_bib101","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s10115-011-0465-6","article-title":"Smote-rs b*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory","volume":"33","author":"Ramentol","year":"2012","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.engappai.2023.107568_bib102","series-title":"2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS)","article-title":"Cusboost: cluster-based under-sampling with boosting for imbalanced classification","author":"Rayhan","year":"2017"},{"year":"2020","author":"Said Elsayed","series-title":"Network Anomaly Detection Using LSTM Based Autoencoder. Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks","key":"10.1016\/j.engappai.2023.107568_bib103"},{"key":"10.1016\/j.engappai.2023.107568_bib104","series-title":"Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik","first-page":"37","article-title":"Explaining adaboost","author":"Schapire","year":"2013"},{"key":"10.1016\/j.engappai.2023.107568_bib105","series-title":"Empirical Inference","first-page":"37","article-title":"Explaining adaboost","author":"Schapire","year":"2013"},{"key":"10.1016\/j.engappai.2023.107568_bib106","doi-asserted-by":"crossref","DOI":"10.1016\/j.aap.2019.105398","article-title":"A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach","volume":"136","author":"Schl\u00f6gl","year":"2020","journal-title":"Accid. Anal. Prev."},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib107","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TSMCA.2009.2029559","article-title":"RUSBoost: a hybrid approach to alleviating class imbalance","volume":"40","author":"Seiffert","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. Syst. Hum."},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib108","doi-asserted-by":"crossref","first-page":"444","DOI":"10.23883\/IJRTER.2017.3168.0UWXM","article-title":"A review on imbalanced data handling using undersampling and oversampling technique","volume":"3","author":"Shelke","year":"2017","journal-title":"Int. J. Recent Trends Eng. Res"},{"issue":"2","key":"10.1016\/j.engappai.2023.107568_bib109","first-page":"130","article-title":"Decision tree methods: applications for classification and prediction","volume":"27","author":"Song","year":"2015","journal-title":"Shanghai Archives of Psychiatry"},{"issue":"2","key":"10.1016\/j.engappai.2023.107568_bib110","first-page":"130","article-title":"Decision tree methods: applications for classification and prediction","volume":"27","author":"Song","year":"2015","journal-title":"Shanghai Archives of Psychiatry"},{"issue":"2","key":"10.1016\/j.engappai.2023.107568_bib111","article-title":"A classification framework for anomaly detection","volume":"6","author":"Steinwart","year":"2005","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib112","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1142\/S0218001409007326","article-title":"Classification of imbalanced data: a review","volume":"23","author":"Sun","year":"2009","journal-title":"Int. J. Pattern Recogn. Artif. Intell."},{"issue":"6","key":"10.1016\/j.engappai.2023.107568_bib113","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1177\/03611981221074370","article-title":"Efficient histogram-based gradient boosting approach for accident severity prediction with multisource data","volume":"2676","author":"Tamim Kashifi","year":"2022","journal-title":"Transport. Res. Rec."},{"year":"1976","author":"Tomek","series-title":"Two Modifications of CNN","key":"10.1016\/j.engappai.2023.107568_bib114"},{"year":"2022","series-title":"The TON_IoT Datasets","key":"10.1016\/j.engappai.2023.107568_bib115"},{"issue":"5","key":"10.1016\/j.engappai.2023.107568_bib116","first-page":"987","article-title":"Modest AdaBoost-teaching AdaBoost to generalize better","volume":"12","author":"Vezhnevets","year":"2005","journal-title":"Graphicon"},{"volume":"vol. 19","year":"2018","author":"Vuttipittayamongkol","key":"10.1016\/j.engappai.2023.107568_bib117"},{"issue":"7","key":"10.1016\/j.engappai.2023.107568_bib118","doi-asserted-by":"crossref","first-page":"2375","DOI":"10.3390\/ijerph17072375","article-title":"Improve aggressive driver recognition using collision surrogate measurement and imbalanced class boosting","volume":"17","author":"Wang","year":"2020","journal-title":"Int. J. Environ. Res. Publ. Health"},{"year":"2010","author":"Wang","series-title":"Negative Correlation Learning for Classification Ensembles. The 2010 International Joint Conference on Neural Networks (IJCNN)","key":"10.1016\/j.engappai.2023.107568_bib119"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib120","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1109\/TSMCB.2012.2187280","article-title":"Multiclass imbalance problems: analysis and potential solutions","volume":"42","author":"Wang","year":"2012","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"4","key":"10.1016\/j.engappai.2023.107568_bib121","first-page":"1","article-title":"Survey on imbalanced data mining methods","volume":"55","author":"Xiang","year":"2019","journal-title":"Computer Engineering and Applications"},{"key":"10.1016\/j.engappai.2023.107568_bib122","series-title":"2017 10th International Symposium on Computational Intelligence and Design (ISCID)","article-title":"An improved data anomaly detection method based on isolation forest","author":"Xu","year":"2017"},{"issue":"11","key":"10.1016\/j.engappai.2023.107568_bib123","doi-asserted-by":"crossref","first-page":"4042","DOI":"10.3390\/s22114042","article-title":"A new multi-sensor stream data augmentation method for imbalanced learning in complex manufacturing process","volume":"22","author":"Xu","year":"2022","journal-title":"Sensors"},{"issue":"9","key":"10.1016\/j.engappai.2023.107568_bib124","doi-asserted-by":"crossref","first-page":"9194","DOI":"10.1109\/TCYB.2021.3061147","article-title":"Two-stage selective ensemble of CNN via deep tree training for medical image classification","volume":"52","author":"Yang","year":"2021","journal-title":"IEEE Trans. Cybernet."},{"year":"2014","author":"Yap","series-title":"An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. Proceedings of the First International Conference on Advanced Data and Information Engineering","key":"10.1016\/j.engappai.2023.107568_bib125"},{"year":"2020","author":"Yilmaz","series-title":"Addressing Imbalanced Data Problem with Generative Adversarial Network for Intrusion Detection. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI)","key":"10.1016\/j.engappai.2023.107568_bib126"},{"year":"2019","author":"Yun-xiang","series-title":"Bank Account Abnormal Transaction Recognition Based on Relief Algorithm and BalanceCascade. Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference","key":"10.1016\/j.engappai.2023.107568_bib127"},{"year":"2018","author":"Zenati","series-title":"Efficient gan-based Anomaly Detection","key":"10.1016\/j.engappai.2023.107568_bib128"},{"key":"10.1016\/j.engappai.2023.107568_bib129","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.cose.2019.03.009","article-title":"Abnormal detection method of industrial control system based on behavior model","volume":"84","author":"Zhanwei","year":"2019","journal-title":"Comput. Secur."},{"issue":"6A","key":"10.1016\/j.engappai.2023.107568_bib130","first-page":"22","article-title":"Overview of imbalance data classification","volume":"45","author":"Zhao","year":"2018","journal-title":"Computer Science"},{"issue":"9","key":"10.1016\/j.engappai.2023.107568_bib131","first-page":"2591","article-title":"Improved smote unbalanced data integration classification algorithm","volume":"39","author":"Zhongzhen","year":"2019","journal-title":"J. Comput. Appl."},{"issue":"8","key":"10.1016\/j.engappai.2023.107568_bib132","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3547330","article-title":"Adversarial attacks and defenses in deep learning: from a perspective of cybersecurity","volume":"55","author":"Zhou","year":"2022","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"10.1016\/j.engappai.2023.107568_bib133","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1109\/TKDE.2006.17","article-title":"Training cost-sensitive neural networks with methods addressing the class imbalance problem","volume":"18","author":"Zhou","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.engappai.2023.107568_bib134","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1111\/j.1467-8640.2010.00358.x","article-title":"On multi-class cost-sensitive learning","volume":"26","author":"Zhou","year":"2010","journal-title":"Comput. Intell."},{"key":"10.1016\/j.engappai.2023.107568_bib135","series-title":"International Conference on Neural Information Processing","first-page":"21","article-title":"December). Data augment in imbalanced learning based on generative adversarial networks","author":"Zhou","year":"2019"},{"issue":"6","key":"10.1016\/j.engappai.2023.107568_bib136","doi-asserted-by":"crossref","first-page":"2824","DOI":"10.1109\/TKDE.2020.3014246","article-title":"More than privacy: applying differential privacy in key areas of artificial intelligence","volume":"34","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623017529?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623017529?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T10:37:52Z","timestamp":1730630272000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623017529"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":136,"alternative-id":["S0952197623017529"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107568","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybrid resampling and weighted majority voting for multi-class anomaly detection on imbalanced malware and network traffic data","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107568","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107568"}}