{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T04:20:55Z","timestamp":1730434855806,"version":"3.28.0"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.engappai.2023.107377","type":"journal-article","created":{"date-parts":[[2023,10,30]],"date-time":"2023-10-30T14:52:02Z","timestamp":1698677522000},"page":"107377","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"PB","title":["Incorporating stock prices and text for stock movement prediction based on information fusion"],"prefix":"10.1016","volume":"127","author":[{"given":"Qiuyue","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1237-6035","authenticated-orcid":false,"given":"Yunfeng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Fangxun","family":"Bao","sequence":"additional","affiliation":[]},{"given":"Yifang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Caiming","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peide","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2023.107377_b1","doi-asserted-by":"crossref","unstructured":"Adebiyi, Ayodele A., Adewumi, Aderemi O., Ayo, Charles K., 2014. Stock price prediction using the ARIMA model. In: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. pp. 106\u2013112.","DOI":"10.1109\/UKSim.2014.67"},{"key":"10.1016\/j.engappai.2023.107377_b2","doi-asserted-by":"crossref","unstructured":"Altieri, Massimiliano, Corizzo, Roberto, Ceci, Michelangelo, 2022. Scalable Forecasting in Sensor Networks with Graph Convolutional LSTM Models. In: 2022 IEEE International Conference on Big Data, Big Data. pp. 4595\u20134600.","DOI":"10.1109\/BigData55660.2022.10020456"},{"key":"10.1016\/j.engappai.2023.107377_b3","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.inffus.2021.09.004","article-title":"Multimodal Earth observation data fusion: Graph-based approach in shared latent space","volume":"78","author":"Arun","year":"2022","journal-title":"Inf. Fusion"},{"issue":"2","key":"10.1016\/j.engappai.2023.107377_b4","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1109\/TPAMI.2018.2798607","article-title":"Multimodal machine learning: A survey and taxonomy","volume":"41","author":"Baltrusaitis","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.107377_b5","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.inffus.2016.11.006","article-title":"Fusion of multiple diverse predictors in stock market","volume":"36","author":"Barak","year":"2017","journal-title":"Inf. Fusion"},{"year":"2004","series-title":"Smoothing, Forecasting and Prediction of Discrete Time Series","author":"Brown","key":"10.1016\/j.engappai.2023.107377_b6"},{"key":"10.1016\/j.engappai.2023.107377_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119527","article-title":"Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction","volume":"219","author":"Chaudhari","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107377_b8","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.ins.2020.12.068","article-title":"A novel graph convolutional feature based convolutional neural network for stock trend prediction","volume":"556","author":"Chen","year":"2021","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.engappai.2023.107377_b9","article-title":"An interpretable neural fuzzy Hammerstein\u2013Wiener network for stock price prediction","volume":"577","author":"Chen","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2023.107377_b10","doi-asserted-by":"crossref","unstructured":"Cheng, Rui, Li, Qing, 2021. Modeling the Momentum Spillover Effect for Stock Prediction via Attribute-Driven Graph Attention Networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. pp. 55\u201362.","DOI":"10.1609\/aaai.v35i1.16077"},{"key":"10.1016\/j.engappai.2023.107377_b11","doi-asserted-by":"crossref","unstructured":"Ding, Qianggang, Wu, Sifan, Sun, Hao, Guo, Jiadong, Guo, Jian, 2020. Hierarchical Multi-Scale Gaussian Transformer for Stock Movement Prediction. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. pp. 4640\u20134646.","DOI":"10.24963\/ijcai.2020\/640"},{"key":"10.1016\/j.engappai.2023.107377_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.108107","article-title":"Gated attention fusion network for multimodal sentiment classification","volume":"240","author":"Du","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.engappai.2023.107377_b13","doi-asserted-by":"crossref","first-page":"383","DOI":"10.2307\/2325486","article-title":"Efficient capital markets: A review of theory and empirical work","volume":"25","author":"Fama","year":"1970","journal-title":"J. Finance"},{"key":"10.1016\/j.engappai.2023.107377_b14","doi-asserted-by":"crossref","unstructured":"Feng, Fuli, Chen, Huimin, He, Xiangnan, Ding, Ji, Sun, Maosong, Chua, Tat Seng, 2019a. Enhancing stock movement prediction with adversarial training. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. pp. 5843\u20135849.","DOI":"10.24963\/ijcai.2019\/810"},{"issue":"2","key":"10.1016\/j.engappai.2023.107377_b15","doi-asserted-by":"crossref","first-page":"27:1","DOI":"10.1145\/3309547","article-title":"Temporal relational ranking for stock prediction","volume":"37","author":"Feng","year":"2019","journal-title":"ACM Trans. Inf. Syst."},{"issue":"1","key":"10.1016\/j.engappai.2023.107377_b16","first-page":"1","article-title":"Graph-based stock recommendation by time-aware relational attention network","volume":"16","author":"Gao","year":"2021","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.engappai.2023.107377_b17","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.ins.2020.05.064","article-title":"Attention based consistent semantic learning for micro-video scene recognition","volume":"543","author":"Guo","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2023.107377_b18","article-title":"SuperDeConFuse: A supervised deep convolutional transform based fusion framework for financial trading systems","author":"Gupta","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.107377_b19","doi-asserted-by":"crossref","unstructured":"Hu, Ziniu, Liu, Weiqing, Bian, Jiang, Liu, Xuanzhe, Liu, Tie Yan, 2018. Listening to chaotic whispers: A deep learning framework for news-oriented Stock trend prediction. In: WSDM 2018 - Proceedings of the 11th ACM International Conference on Web Search and Data Mining. pp. 261\u2013269.","DOI":"10.1145\/3159652.3159690"},{"key":"10.1016\/j.engappai.2023.107377_b20","doi-asserted-by":"crossref","unstructured":"Hu, Ronghang, Singh, Amanpreet, 2021. Unit: Multimodal multitask learning with a unified transformer. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 1439\u20131449.","DOI":"10.1109\/ICCV48922.2021.00147"},{"key":"10.1016\/j.engappai.2023.107377_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105452","article-title":"GCNET: Graph-based prediction of stock price movement using graph convolutional network","volume":"116","author":"Jafari","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.107377_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2022.02.015","article-title":"An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices","volume":"594","author":"Kamara","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2023.107377_b23","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1016\/j.asoc.2017.09.029","article-title":"Wavelet neural network prediction method of stock price trend based on rough set attribute reduction","volume":"62","author":"Lei","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2023.107377_b24","series-title":"Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence","first-page":"4541","article-title":"Modeling the stock relation with graph network for overnight stock movement prediction","author":"Li","year":"2021"},{"key":"10.1016\/j.engappai.2023.107377_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106548","article-title":"ASRNN: A recurrent neural network with an attention model for sequence labeling","volume":"212","author":"Lin","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2023.107377_b26","unstructured":"Liu, Jintao, Liu, Xikai, Lin, Hongfei, Xu, Bo, Ren, Yuqi, Diao, Yufeng, Yang, Liang, 2019. Transformer-Based Capsule Network For Stock Movements Prediction. In: Proceedings of the First Workshop on Financial Technology and Natural Language Processing (FinNLP@IJCAI 2019). pp. 66\u201373."},{"key":"10.1016\/j.engappai.2023.107377_b27","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.knosys.2018.10.034","article-title":"Deep learning-based feature engineering for stock price movement prediction","volume":"164","author":"Long","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2023.107377_b28","article-title":"Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks","volume":"32","author":"Lu","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2023.107377_b29","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1016\/j.inffus.2022.10.025","article-title":"Multi-source aggregated classification for stock price movement prediction","volume":"91","author":"Ma","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.engappai.2023.107377_b30","series-title":"2021 International Conference on System Science and Engineering, ICSSE","first-page":"215","article-title":"An analysis of state-of-the-art activation functions for supervised deep neural network","author":"Nguyen","year":"2021"},{"key":"10.1016\/j.engappai.2023.107377_b31","series-title":"2016 International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES","first-page":"1345","article-title":"Sentiment analysis of Twitter data for predicting stock market movements","author":"Pagolu","year":"2016"},{"key":"10.1016\/j.engappai.2023.107377_b32","series-title":"2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, CVPR","first-page":"6959","article-title":"MFAS: Multimodal fusion architecture search","author":"Perez-Rua","year":"2019"},{"key":"10.1016\/j.engappai.2023.107377_b33","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.inffus.2021.12.003","article-title":"Multimodal Co-learning: Challenges, applications with datasets, recent advances and future directions","volume":"81","author":"Rahate","year":"2022","journal-title":"Inf. Fusion"},{"issue":"24","key":"10.1016\/j.engappai.2023.107377_b34","doi-asserted-by":"crossref","first-page":"17353","DOI":"10.1007\/s00521-021-06324-9","article-title":"Using company-specific headlines and convolutional neural networks to predict stock fluctuations","volume":"33","author":"Readshaw","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.engappai.2023.107377_b35","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/j.asoc.2018.04.024","article-title":"Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach","volume":"70","author":"Sezer","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2023.107377_b36","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.patrec.2021.02.008","article-title":"Self-attention-based conditional random fields latent variables model for sequence labeling","volume":"145","author":"Shao","year":"2021","journal-title":"Pattern Recognit. Lett."},{"issue":"2","key":"10.1016\/j.engappai.2023.107377_b37","doi-asserted-by":"crossref","first-page":"1394","DOI":"10.1109\/TSTE.2020.3046098","article-title":"RSAM: Robust self-attention based multi-horizon model for solar irradiance forecasting","volume":"12","author":"Sharda","year":"2020","journal-title":"IEEE Trans. Sustain. Energy"},{"issue":"3","key":"10.1016\/j.engappai.2023.107377_b38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/econometrics6030034","article-title":"Financial big data solutions for state space panel regression in interest rate dynamics","volume":"6","author":"Toczydlowska","year":"2018","journal-title":"Econometrics"},{"key":"10.1016\/j.engappai.2023.107377_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110262","article-title":"Essential tensor learning for multimodal information-driven stock movement prediction","volume":"262","author":"Wang","year":"2023","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.engappai.2023.107377_b40","doi-asserted-by":"crossref","first-page":"1066","DOI":"10.1016\/j.ins.2020.09.031","article-title":"Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting","volume":"547","author":"Wang","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2023.107377_b41","doi-asserted-by":"crossref","unstructured":"Wu, Huizhe, Zhang, Wei, Shen, Weiwei, Wang, Jun, 2018. Hybrid Deep Sequential Modeling for Social Text-Driven Stock Prediction. In: The 27th ACM International Conference on Information and Knowledge Management, CIKM\u2019 18. pp. 1627\u20131630.","DOI":"10.1145\/3269206.3269290"},{"issue":"5","key":"10.1016\/j.engappai.2023.107377_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2020.102314","article-title":"Social media marketing and financial forecasting","volume":"57","author":"Xing","year":"2020","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.engappai.2023.107377_b43","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.neucom.2020.07.108","article-title":"Stock movement predictive network via incorporative attention mechanisms based on tweet and historical prices","volume":"418","author":"Xu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.107377_b44","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neucom.2021.09.072","article-title":"Stock movement prediction via gated recurrent unit network based on reinforcement learning with incorporated attention mechanisms","volume":"467","author":"Xu","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.107377_b45","series-title":"ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Long Papers, vol. 1","first-page":"1970","article-title":"Stock movement prediction from tweets and historical prices","author":"Xu","year":"2018"},{"key":"10.1016\/j.engappai.2023.107377_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108209","article-title":"Graph-based stock correlation and prediction for high-frequency trading systems","volume":"122","author":"Yin","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2023.107377_b47","doi-asserted-by":"crossref","unstructured":"Yoo, Jaemin, Soun, Yejun, Park, Yong-chan, Kang, U., 2021. Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts. In: KDD \u201921: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 2037\u20132045.","DOI":"10.1145\/3447548.3467297"},{"issue":"3","key":"10.1016\/j.engappai.2023.107377_b48","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1109\/JSTSP.2020.2987728","article-title":"Multimodal intelligence: Representation learning, information fusion, and applications","volume":"14","author":"Zhang","year":"2020","journal-title":"IEEE J. Sel. Top. Sign. Proces."},{"key":"10.1016\/j.engappai.2023.107377_b49","series-title":"Artificial Intelligence and Soft Computing - 20th International Conference, ICAISC 2021","first-page":"269","article-title":"Applying convolutional neural networks for stock market trends identification","volume":"vol. 12854","author":"Zolotareva","year":"2021"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623015610?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623015610?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T01:37:30Z","timestamp":1730425050000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623015610"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":49,"alternative-id":["S0952197623015610"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107377","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Incorporating stock prices and text for stock movement prediction based on information fusion","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107377","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107377"}}