{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T18:52:44Z","timestamp":1720464764624},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012326","name":"International Science and Technology Cooperation Programme","doi-asserted-by":"publisher","award":["2015DFR10830"],"id":[{"id":"10.13039\/501100012326","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.engappai.2023.107103","type":"journal-article","created":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T15:14:19Z","timestamp":1694531659000},"page":"107103","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PD","title":["A novel noise-robustness and rotation-invariant LADAR point cloud target classification method"],"prefix":"10.1016","volume":"126","author":[{"given":"Shangwei","family":"Guo","sequence":"first","affiliation":[]},{"given":"Jun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhengchao","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Shaokun","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.engappai.2023.107103_b1","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1007\/s10064-020-01922-8","article-title":"Landslide susceptibility mapping using hybridized block modular intelligence model","volume":"80","author":"Abbaszadeh Shahri","year":"2021","journal-title":"Bull. Eng. Geol. Environ."},{"key":"10.1016\/j.engappai.2023.107103_b2","first-page":"1","article-title":"A novel approach to uncertainty quantification in groundwater table modeling by automated predictive deep learning","author":"Abbaszadeh Shahri","year":"2022","journal-title":"Nat. Resourc. Res."},{"key":"10.1016\/j.engappai.2023.107103_b3","doi-asserted-by":"crossref","unstructured":"Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S., 2016. 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1534\u20131543.","DOI":"10.1109\/CVPR.2016.170"},{"issue":"3","key":"10.1016\/j.engappai.2023.107103_b4","doi-asserted-by":"crossref","first-page":"562","DOI":"10.2166\/hydro.2020.098","article-title":"Updating the neural network sediment load models using different sensitivity analysis methods: A regional application","volume":"22","author":"Asheghi","year":"2020","journal-title":"J. Hydroinform."},{"issue":"10","key":"10.1016\/j.engappai.2023.107103_b5","doi-asserted-by":"crossref","first-page":"1252","DOI":"10.1016\/j.patrec.2007.02.009","article-title":"3D free-form object recognition in range images using local surface patches","volume":"28","author":"Chen","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.engappai.2023.107103_b6","doi-asserted-by":"crossref","unstructured":"Chen, X., Ma, H., Wan, J., Li, B., Xia, T., 2017. Multi-view 3d object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1907\u20131915.","DOI":"10.1109\/CVPR.2017.691"},{"key":"10.1016\/j.engappai.2023.107103_b7","series-title":"2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1","first-page":"539","article-title":"Learning a similarity metric discriminatively, with application to face verification","author":"Chopra","year":"2005"},{"issue":"3","key":"10.1016\/j.engappai.2023.107103_b8","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.engappai.2023.107103_b9","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.engappai.2023.107103_b10","doi-asserted-by":"crossref","unstructured":"Gao, Z., Wang, L., Wu, G., 2019. Lip: Local importance-based pooling. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 3355\u20133364.","DOI":"10.1109\/ICCV.2019.00345"},{"key":"10.1016\/j.engappai.2023.107103_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.catena.2022.106289","article-title":"A visualized hybrid intelligent model to delineate Swedish fine-grained soil layers using clay sensitivity","volume":"214","author":"Ghaderi","year":"2022","journal-title":"CATENA"},{"issue":"11","key":"10.1016\/j.engappai.2023.107103_b12","doi-asserted-by":"crossref","first-page":"2270","DOI":"10.1109\/TPAMI.2014.2316828","article-title":"3D object recognition in cluttered scenes with local surface features: A survey","volume":"36","author":"Guo","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.107103_b13","article-title":"Deep learning for 3d point clouds: A survey","author":"Guo","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.107103_b14","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.engappai.2023.107103_b15","unstructured":"Hough, P.V., 1959. Machine analysis of bubble chamber pictures. In: Proc. of the International Conference on High Energy Accelerators and Instrumentation, Sept. 1959. pp. 554\u2013556."},{"key":"10.1016\/j.engappai.2023.107103_b16","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"issue":"5","key":"10.1016\/j.engappai.2023.107103_b17","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1109\/34.765655","article-title":"Using spin images for efficient object recognition in cluttered 3D scenes","volume":"21","author":"Johnson","year":"1999","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.107103_b18","unstructured":"Kazhdan, M., Funkhouser, T., Rusinkiewicz, S., 2003. Rotation invariant spherical harmonic representation of 3 d shape descriptors. In: Symposium on Geometry Processing, Vol. 6. pp. 156\u2013164."},{"key":"10.1016\/j.engappai.2023.107103_b19","series-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"issue":"8","key":"10.1016\/j.engappai.2023.107103_b20","doi-asserted-by":"crossref","DOI":"10.1117\/1.OE.51.8.087201","article-title":"Target recognition for small samples of ladar range image using classifier ensembles","volume":"51","author":"Liu","year":"2012","journal-title":"Opt. Eng."},{"key":"10.1016\/j.engappai.2023.107103_b21","series-title":"Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2","first-page":"1150","article-title":"Object recognition from local scale-invariant features","author":"Lowe","year":"1999"},{"key":"10.1016\/j.engappai.2023.107103_b22","series-title":"2015 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"922","article-title":"Voxnet: A 3d convolutional neural network for real-time object recognition","author":"Maturana","year":"2015"},{"key":"10.1016\/j.engappai.2023.107103_b23","doi-asserted-by":"crossref","unstructured":"Mitra, N.J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry. pp. 322\u2013328.","DOI":"10.1145\/777792.777840"},{"issue":"4","key":"10.1016\/j.engappai.2023.107103_b24","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1145\/571647.571648","article-title":"Shape distributions","volume":"21","author":"Osada","year":"2002","journal-title":"ACM Trans. Graph."},{"issue":"1\u20132","key":"10.1016\/j.engappai.2023.107103_b25","first-page":"103","article-title":"Description of shape information for 2-D and 3-D objects","volume":"16","author":"Paquet","year":"2000","journal-title":"Signal Process.: Image Commun."},{"key":"10.1016\/j.engappai.2023.107103_b26","series-title":"European Conference on Computer Vision","first-page":"143","article-title":"Improving the fisher kernel for large-scale image classification","author":"Perronnin","year":"2010"},{"key":"10.1016\/j.engappai.2023.107103_b27","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 652\u2013660."},{"key":"10.1016\/j.engappai.2023.107103_b28","doi-asserted-by":"crossref","unstructured":"Qi, C.R., Su, H., Nie\u00dfner, M., Dai, A., Yan, M., Guibas, L.J., 2016. Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5648\u20135656.","DOI":"10.1109\/CVPR.2016.609"},{"key":"10.1016\/j.engappai.2023.107103_b29","series-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"Qi","year":"2017"},{"issue":"6088","key":"10.1016\/j.engappai.2023.107103_b30","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2023.107103_b31","series-title":"2010 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"2155","article-title":"Fast 3d recognition and pose using the viewpoint feature histogram","author":"Rusu","year":"2010"},{"key":"10.1016\/j.engappai.2023.107103_b32","doi-asserted-by":"crossref","unstructured":"Saeedan, F., Weber, N., Goesele, M., Roth, S., 2018. Detail-preserving pooling in deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9108\u20139116.","DOI":"10.1109\/CVPR.2018.00949"},{"issue":"6","key":"10.1016\/j.engappai.2023.107103_b33","doi-asserted-by":"crossref","first-page":"1300","DOI":"10.1016\/j.jrmge.2021.07.006","article-title":"Spatial distribution modeling of subsurface bedrock using a developed automated intelligence deep learning procedure: A case study in Sweden","volume":"13","author":"Shahri","year":"2021","journal-title":"J. Rock Mech. Geotech. Eng."},{"key":"10.1016\/j.engappai.2023.107103_b34","article-title":"Landslide susceptibility hazard map in southwest Sweden using artificial neural network","volume":"183","author":"Shahri","year":"2019","journal-title":"Catena"},{"key":"10.1016\/j.engappai.2023.107103_b35","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.engappai.2023.107103_b36","doi-asserted-by":"crossref","unstructured":"Song, X., Wang, P., Zhou, D., Zhu, R., Guan, C., Dai, Y., Su, H., Li, H., Yang, R., 2019. Apollocar3d: A large 3d car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 5452\u20135462.","DOI":"10.1109\/CVPR.2019.00560"},{"key":"10.1016\/j.engappai.2023.107103_b37","doi-asserted-by":"crossref","unstructured":"Su, J.-C., Gadelha, M., Wang, R., Maji, S., 2018. A deeper look at 3D shape classifiers. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops.","DOI":"10.1007\/978-3-030-11015-4_49"},{"key":"10.1016\/j.engappai.2023.107103_b38","doi-asserted-by":"crossref","unstructured":"Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 945\u2013953.","DOI":"10.1109\/ICCV.2015.114"},{"issue":"5","key":"10.1016\/j.engappai.2023.107103_b39","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1016\/j.cviu.2010.11.021","article-title":"Local shape descriptor selection for object recognition in range data","volume":"115","author":"Taati","year":"2011","journal-title":"Comput. Vis. Image Underst."},{"issue":"4","key":"10.1016\/j.engappai.2023.107103_b40","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1109\/34.3913","article-title":"On image analysis by the methods of moments","volume":"10","author":"Teh","year":"1988","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.engappai.2023.107103_b41","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: From error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2023.107103_b42","unstructured":"Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2015. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1912\u20131920."},{"key":"10.1016\/j.engappai.2023.107103_b43","doi-asserted-by":"crossref","unstructured":"Yu, T., Meng, J., Yuan, J., 2018. Multi-view harmonized bilinear network for 3d object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 186\u2013194.","DOI":"10.1109\/CVPR.2018.00027"},{"key":"10.1016\/j.engappai.2023.107103_b44","series-title":"International Conference on Machine Learning","first-page":"7324","article-title":"Making convolutional networks shift-invariant again","author":"Zhang","year":"2019"},{"issue":"5","key":"10.1016\/j.engappai.2023.107103_b45","doi-asserted-by":"crossref","first-page":"2251","DOI":"10.1364\/OE.15.002251","article-title":"Geometric invariant blind image watermarking by invariant tchebichef moments","volume":"15","author":"Zhang","year":"2007","journal-title":"Opt. Express"},{"key":"10.1016\/j.engappai.2023.107103_b46","series-title":"2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops","first-page":"689","article-title":"Intrinsic shape signatures: A shape descriptor for 3d object recognition","author":"Zhong","year":"2009"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623012873?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623012873?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T14:27:56Z","timestamp":1703341676000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623012873"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":46,"alternative-id":["S0952197623012873"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107103","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel noise-robustness and rotation-invariant LADAR point cloud target classification method","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107103","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107103"}}