{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T21:24:18Z","timestamp":1744493058083},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.engappai.2023.107050","type":"journal-article","created":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T23:09:59Z","timestamp":1693868999000},"page":"107050","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"PC","title":["Lightning risk assessment of offshore wind farms by semi-supervised learning"],"prefix":"10.1016","volume":"126","author":[{"given":"Qibin","family":"Zhou","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0003-1815-6329","authenticated-orcid":false,"given":"Jingjie","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Guohua","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Ruanming","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yudan","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Xiaoyan","family":"Bian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2023.107050_bib1","unstructured":"M. Belkin, P. Niyogi, and V. Sindhwani, \u2018Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples\u2019."},{"issue":"5","key":"10.1016\/j.engappai.2023.107050_bib2","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1007\/s41324-019-00311-y","article-title":"\u2018Modeling on the spatial vulnerability of lightning disaster in Bangladesh using GIS and IDW techniques\u2019","volume":"28","author":"Biswas","year":"2020","journal-title":"Spat. Inf. Res."},{"issue":"3","key":"10.1016\/j.engappai.2023.107050_bib3","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1109\/TPWRD.2014.2370682","article-title":"Lightning damage to wind turbine blades from wind farms in the U.S","volume":"31","author":"Candela Garolera","year":"2016","journal-title":"IEEE Trans. Power Deliv."},{"issue":"2","key":"10.1016\/j.engappai.2023.107050_bib4","first-page":"234","article-title":"The application of analytic hierarchy process (AHP) and geographic information system (GIS) in lightning disaster risk-zoning in Henan province","volume":"11","author":"Cheng","year":"2019","journal-title":"Nanjing Xinxi Gongcheng Daxue Xuebao"},{"key":"10.1016\/j.engappai.2023.107050_bib5","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.neucom.2019.12.130","article-title":"Graph-based semi-supervised learning: a review","volume":"408","author":"Chong","year":"2020","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.engappai.2023.107050_bib6","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.engappai.2023.107050_bib7","doi-asserted-by":"crossref","first-page":"31399","DOI":"10.1109\/ACCESS.2023.3262270","article-title":"Laplacian twin support vector machine with pinball loss for semi-supervised classification","volume":"11","author":"Damminsed","year":"2023","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.107050_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.jngse.2019.103131","article-title":"Fracture identification by semi-supervised learning using conventional logs in tight sandstones of Ordos Basin, China","volume":"76","author":"Dong","year":"2020","journal-title":"J. Nat. Gas Sci. Eng."},{"key":"10.1016\/j.engappai.2023.107050_bib9","doi-asserted-by":"crossref","DOI":"10.1007\/s10462-023-10393-8","article-title":"A review of semi-supervised learning for text classification","author":"Duarte","year":"2023","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.engappai.2023.107050_bib10","series-title":"2012 9th International Conference on Fuzzy Systems and Knowledge Discovery","first-page":"738","article-title":"Semi-supervised subtractive clustering by seeding","author":"Gu","year":"2012"},{"key":"10.1016\/j.engappai.2023.107050_bib11","series-title":"Computer Vision \u2013 ECCV 2022","first-page":"437","article-title":"Auto-FedRL: federated hyperparameter optimization for multi-institutional medical image segmentation","author":"Guo","year":"2022"},{"key":"10.1016\/j.engappai.2023.107050_bib12","doi-asserted-by":"crossref","DOI":"10.3389\/fenvs.2022.943000","article-title":"Lightning disaster risk zoning in Jiangsu province of China based on the analytic hierarchy process and entropy weight method","volume":"10","author":"Jin","year":"2022","journal-title":"Front. Environ. Sci."},{"key":"10.1016\/j.engappai.2023.107050_bib13","doi-asserted-by":"crossref","DOI":"10.1016\/j.rser.2022.112723","article-title":"Recent advances in damage detection of wind turbine blades: a state-of-the-art review","volume":"167","author":"Kaewniam","year":"2022","journal-title":"Renew. Sustain. Energy Rev."},{"key":"10.1016\/j.engappai.2023.107050_bib14","series-title":"Proceedings of ICNN\u201995 - International Conference on Neural Networks","first-page":"1942","article-title":"Particle swarm optimization","volume":"vol. 4","author":"Kennedy","year":"1995"},{"key":"10.1016\/j.engappai.2023.107050_bib15","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.rser.2015.12.223","article-title":"Solar\u2013wind hybrid renewable energy system: a review","volume":"58","author":"Khare","year":"2016","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"7","key":"10.1016\/j.engappai.2023.107050_bib16","doi-asserted-by":"crossref","DOI":"10.1063\/1.4999311","article-title":"The lightning striking probability for offshore wind turbine blade with salt fog contamination","volume":"122","author":"Li","year":"2017","journal-title":"J. Appl. Phys."},{"issue":"2","key":"10.1016\/j.engappai.2023.107050_bib17","article-title":"Lightning disaster risk zoning in Cangnan of Zhejiang province based on AHP-Grey relational analysis","volume":"6","author":"Lin","year":"2014","journal-title":"Nanjing Xinxi Gongcheng Daxue Xuebao"},{"key":"10.1016\/j.engappai.2023.107050_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.marpetgeo.2023.106168","article-title":"Lithology identification using graph neural network in continental shale oil reservoirs: a case study in Mahu Sag, Junggar Basin, Western China","volume":"150","author":"Lu","year":"2023","journal-title":"Mar. Petrol. Geol."},{"key":"10.1016\/j.engappai.2023.107050_bib19","series-title":"Advances in Neural Information Processing Systems","article-title":"A unified approach to interpreting model predictions","author":"Lundberg","year":"2017"},{"key":"10.1016\/j.engappai.2023.107050_bib20","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1016\/j.scitotenv.2019.05.274","article-title":"Environmental impact and pollution-related challenges of renewable wind energy paradigm \u2013 a review","volume":"683","author":"Nazir","year":"2019","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.engappai.2023.107050_bib21","doi-asserted-by":"crossref","first-page":"8465","DOI":"10.1016\/j.egyr.2021.01.018","article-title":"Predicting the energy output of hybrid PV\u2013wind renewable energy system using feature selection technique for smart grids","volume":"7","author":"Qadir","year":"2021","journal-title":"Energy Rep."},{"issue":"1","key":"10.1016\/j.engappai.2023.107050_bib22","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/TCBB.2020.2979841","article-title":"Transforming UTE-mDixon MR abdomen-pelvis images into CT by jointly leveraging prior knowledge and partial supervision","volume":"18","author":"Qian","year":"2021","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf"},{"issue":"1","key":"10.1016\/j.engappai.2023.107050_bib23","doi-asserted-by":"crossref","first-page":"108","DOI":"10.2174\/1574893616666210806091922","article-title":"Identification of DNA-binding proteins via hypergraph based laplacian support vector machine","volume":"17","author":"Qian","year":"2022","journal-title":"Curr. Bioinf."},{"issue":"3","key":"10.1016\/j.engappai.2023.107050_bib24","first-page":"79","article-title":"AHP model-based risk assessment of lightning in Meizhou","volume":"9","author":"Qing","year":"2018","journal-title":"Meteorol. Environ. Res."},{"issue":"11","key":"10.1016\/j.engappai.2023.107050_bib25","doi-asserted-by":"crossref","first-page":"2888","DOI":"10.1016\/j.renene.2011.04.011","article-title":"Protection of wind energy systems against the indirect effects of lightning","volume":"36","author":"Rodrigues","year":"2011","journal-title":"Renew. Energy"},{"issue":"4","key":"10.1016\/j.engappai.2023.107050_bib26","doi-asserted-by":"crossref","first-page":"183","DOI":"10.32604\/jbd.2021.024892","article-title":"A lightning disaster risk assessment model based on SVM","volume":"3","author":"Sheng","year":"2021","journal-title":"J. Big Data"},{"key":"10.1016\/j.engappai.2023.107050_bib27","first-page":"1","article-title":"Graph-based semi-supervised learning: a comprehensive review","author":"Song","year":"2022","journal-title":"IEEE Transact. Neural Networks Learn. Syst."},{"issue":"5","key":"10.1016\/j.engappai.2023.107050_bib28","doi-asserted-by":"crossref","first-page":"1369","DOI":"10.1007\/s13042-021-01452-z","article-title":"Hypergraph based semi-supervised support vector machine for binary and multi-category classifications","volume":"13","author":"Sun","year":"2022","journal-title":"Int. J. Mach. Learn. & Cyber."},{"key":"10.1016\/j.engappai.2023.107050_bib29","first-page":"15","article-title":"Analysis and zoning on vulnerability of the lightning disaster in Guizhou province","author":"Wu","year":"2013","journal-title":"Meteorol. Environ. Res."},{"key":"10.1016\/j.engappai.2023.107050_bib30","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.egyr.2023.05.085","article-title":"Investigation of lightning attachment characteristics of wind turbine blades with different receptors","volume":"9","author":"Xie","year":"2023","journal-title":"Energy Rep."},{"issue":"5","key":"10.1016\/j.engappai.2023.107050_bib31","first-page":"41","article-title":"Risk assessment and zoning of lightning disasters in weiyuan county of neijiang city","volume":"9","author":"Yong","year":"2018","journal-title":"Meteorol. environ. res."},{"key":"10.1016\/j.engappai.2023.107050_bib32","doi-asserted-by":"crossref","first-page":"563","DOI":"10.32604\/cmc.2020.012502","article-title":"A rasterized lightning disaster risk method for imbalanced sets using neural network","volume":"66","author":"Zhang","year":"2020","journal-title":"Comput. Mater. Continua (CMC)"},{"key":"10.1016\/j.engappai.2023.107050_bib33","article-title":"Global offshore wind turbine dataset","volume":"24","author":"Zhang","year":"2020","journal-title":"figshare, Nov."},{"issue":"2","key":"10.1016\/j.engappai.2023.107050_bib34","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1109\/TEC.2022.3230150","article-title":"Experimental evaluation of lightning attachment characteristic of two adjacent wind turbines","volume":"38","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Energy Convers."},{"key":"10.1016\/j.engappai.2023.107050_bib35","first-page":"1","article-title":"Investigation of blade receptor number on the lightning attachment behavior of wind turbine","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Electromagn C."},{"key":"10.1016\/j.engappai.2023.107050_bib36","series-title":"Guildeline for the Certification of Wind Turbines","year":"2010"},{"key":"10.1016\/j.engappai.2023.107050_bib37","article-title":"Identification of coal structures by semi-supervised learning based on limited labeled logging data","volume":"337","year":"2023","journal-title":"Fuel"},{"key":"10.1016\/j.engappai.2023.107050_bib38","series-title":"IEEE Guide for Improving the Lightning Performance of Transmission Lines","first-page":"1","year":"1997"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623012344?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623012344?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,10]],"date-time":"2023-11-10T17:03:51Z","timestamp":1699635831000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623012344"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":38,"alternative-id":["S0952197623012344"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107050","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Lightning risk assessment of offshore wind farms by semi-supervised learning","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.107050","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107050"}}