{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,17]],"date-time":"2024-11-17T05:08:48Z","timestamp":1731820128743,"version":"3.28.0"},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006606","name":"Natural Science Foundation of Tianjin City","doi-asserted-by":"publisher","award":["21JCZDJC00770"],"id":[{"id":"10.13039\/501100006606","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007538","name":"Civil Aviation Administration of China","doi-asserted-by":"publisher","award":["U1733108"],"id":[{"id":"10.13039\/501100007538","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.engappai.2023.106312","type":"journal-article","created":{"date-parts":[[2023,4,24]],"date-time":"2023-04-24T10:57:31Z","timestamp":1682333851000},"page":"106312","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"PB","title":["A novel unsupervised anomaly detection method for rotating machinery based on memory augmented temporal convolutional autoencoder"],"prefix":"10.1016","volume":"123","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0804-5791","authenticated-orcid":false,"given":"Wanxiang","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7310-0921","authenticated-orcid":false,"given":"Zhiwu","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Maosheng","family":"Gao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7137-0111","authenticated-orcid":false,"given":"Shiqi","family":"Qian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2023.106312_b1","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.neucom.2021.11.067","article-title":"Fault detection and diagnosis with a novel source-aware autoencoder and deep residual neural network","volume":"488","author":"Amini","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106312_b2","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.neucom.2021.04.122","article-title":"Implicit supervision for fault detection and segmentation of emerging fault types with deep variational autoencoders","volume":"454","author":"Arias","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106312_b3","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.jmsy.2020.06.014","article-title":"Anomaly monitoring improves remaining useful life estimation of industrial machinery","volume":"56","author":"Aydemir","year":"2020","journal-title":"J. Manuf. Syst."},{"year":"2018","series-title":"An empirical evaluation of generic convolutional and recurrent networks for sequence modeling","author":"Bai","key":"10.1016\/j.engappai.2023.106312_b4"},{"key":"10.1016\/j.engappai.2023.106312_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2021.117509","article-title":"Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers","volume":"302","author":"Bai","year":"2021","journal-title":"Appl. Energy"},{"key":"10.1016\/j.engappai.2023.106312_b6","doi-asserted-by":"crossref","unstructured":"Breunig,\u00a0M-M., Kriegel,\u00a0H-P., Ng,\u00a0R-T., Sander,\u00a0J., 2000. LOF: identifying density-based local outliers. In: SIGMOD\/PODS00: ACM International Conference on Management of Data and Symposium on Principles of Database Systems.","DOI":"10.1145\/342009.335388"},{"key":"10.1016\/j.engappai.2023.106312_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108105","article-title":"An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery","volume":"163","author":"Brito","year":"2022","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2023.106312_b8","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.neucom.2020.05.064","article-title":"A deep domain adaption model with multi-task networks for planetary gearbox fault diagnosis","volume":"409","author":"Cao","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106312_b9","article-title":"Anomaly detection on household appliances based on variational autoencoders","volume":"32","author":"Castangia","year":"2022","journal-title":"Sustain. Energy Grids Netw."},{"key":"10.1016\/j.engappai.2023.106312_b10","unstructured":"Fei,\u00a0T-L., Kai,\u00a0M-T., Zhou,\u00a0Z-H., 2008. Isolation forest. In: IEEE International Conference on Data Mining."},{"key":"10.1016\/j.engappai.2023.106312_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110079","article-title":"Detection of gear fault severity based on parameter-optimized deep belief network using sparrow search algorithm","volume":"185","author":"Gai","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2023.106312_b12","series-title":"KI-2012: Poster and Demo Track","article-title":"Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm","author":"Goldstein","year":"2012"},{"key":"10.1016\/j.engappai.2023.106312_b13","doi-asserted-by":"crossref","unstructured":"Gong,\u00a0D., Liu,\u00a0L., Le,\u00a0V., Saha,\u00a0B., Mansour,\u00a0M-R., et al., 2019. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection. In: 2019 IEEE\/CVF International Conference on Computer Vision. ICCV.","DOI":"10.1109\/ICCV.2019.00179"},{"issue":"1","key":"10.1016\/j.engappai.2023.106312_b14","doi-asserted-by":"crossref","first-page":"83","DOI":"10.3390\/e23010083","article-title":"Health monitoring of air compressors using reconstruction-based deep learning for anomaly detection with increased transparency","volume":"23","author":"Gribbestad","year":"2021","journal-title":"Entropy"},{"issue":"24","key":"10.1016\/j.engappai.2023.106312_b15","doi-asserted-by":"crossref","first-page":"8478","DOI":"10.3390\/s21248478","article-title":"A dual-polarimetric SAR ship detection dataset and a memory-augmented autoencoder-based detection method","volume":"21","author":"Hu","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2023.106312_b16","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/7228511","article-title":"Abnormal communication signals recognition based on image enhancement and improved memory-augmented autoencoder","volume":"2022","author":"Kuang","year":"2022","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"10.1016\/j.engappai.2023.106312_b17","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.jmsy.2020.10.013","article-title":"Fault detection based on one-class deep learning for manufacturing applications limited to an imbalanced database","volume":"57","author":"Lee","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2023.106312_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104279","article-title":"A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery","volume":"102","author":"Li","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.106312_b19","doi-asserted-by":"crossref","unstructured":"Li,\u00a0Z., Zhao,\u00a0Y., Botta,\u00a0N., Ionescu,\u00a0C., Hu,\u00a0X., 2020. COPOD: Copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining. ICDM, Sorrento, Italy.","DOI":"10.1109\/ICDM50108.2020.00135"},{"year":"2022","series-title":"ECOD: Unsupervised outlier detection using empirical cumulative distribution functions","author":"Li","key":"10.1016\/j.engappai.2023.106312_b20"},{"issue":"8","key":"10.1016\/j.engappai.2023.106312_b21","first-page":"1517","article-title":"Generative adversarial active learning for unsupervised outlier detection","volume":"32","author":"Liu","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.engappai.2023.106312_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107007","article-title":"Joint optimization of autoencoder and self-supervised classifier: Anomaly detection of strawberries using hyperspectral imaging","volume":"198","author":"Liu","year":"2022","journal-title":"Comput. Electron. Agric."},{"year":"2016","series-title":"LSTM-based encoder\u2013decoder for multi-sensor anomaly dtection","author":"Malhotra","key":"10.1016\/j.engappai.2023.106312_b23"},{"issue":"2","key":"10.1016\/j.engappai.2023.106312_b24","doi-asserted-by":"crossref","first-page":"433","DOI":"10.3390\/s21020433","article-title":"Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM autoencoder detector and diagnostic classifiers","volume":"21","author":"Mallak","year":"2021","journal-title":"Sensors (Basel)"},{"key":"10.1016\/j.engappai.2023.106312_b25","doi-asserted-by":"crossref","first-page":"104695","DOI":"10.1109\/ACCESS.2021.3100087","article-title":"Network anomaly detection using memory-augmented deep autoencoder","volume":"9","author":"Min","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.106312_b26","article-title":"Cluster-memory augmented deep autoencoder via optimal transportation for hyperspectral anomaly detection","volume":"60","author":"Ning","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106312_b27","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1016\/j.egyr.2022.01.225","article-title":"Predictive anomaly detection for marine diesel engine based on echo state network and autoencoder","volume":"8","author":"Qu","year":"2022","journal-title":"Energy Rep."},{"year":"2016","series-title":"One-shot learning with memory-augmented neural networks","author":"Santoro","key":"10.1016\/j.engappai.2023.106312_b28"},{"key":"10.1016\/j.engappai.2023.106312_b29","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1162\/089976601750264965","article-title":"Estimating the support of a high-dimensional distribution","volume":"13","author":"Sch\u00f6lkopf","year":"2001","journal-title":"Neural Comput."},{"key":"10.1016\/j.engappai.2023.106312_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104295","article-title":"A physics-informed deep learning approach for bearing fault detection","volume":"103","author":"Shen","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.106312_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2021.107101","article-title":"A single fault detection method of gearbox based on random forest hybrid classifier and improved Dempster-Shafer information fusion","volume":"92","author":"Tang","year":"2021","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.engappai.2023.106312_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107751","article-title":"Temporal convolutional autoencoder for unsupervised anomaly detection in time series","volume":"112","author":"Thill","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2023.106312_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110009","article-title":"A novel adaptive weighted kernel extreme learning machine algorithm and its application in wind turbine blade icing fault detection","volume":"185","author":"Tong","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2023.106312_b34","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.jmsy.2021.07.008","article-title":"Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics","volume":"60","author":"Wang","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2023.106312_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105187","article-title":"AdVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection","volume":"190","author":"Wang","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2023.106312_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110064","article-title":"A new method for fault detection of aero-engine based on isolation forest","volume":"185","author":"Wang","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2023.106312_b37","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1016\/j.egyr.2021.09.179","article-title":"Anomaly detection for hydropower turbine unit based on variational modal decomposition and deep autoencoder","volume":"7","author":"Wang","year":"2021","journal-title":"Energy Rep."},{"key":"10.1016\/j.engappai.2023.106312_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107050","article-title":"Multi-scale deep intra-class transfer learning for bearing fault diagnosis","volume":"202","author":"Wang","year":"2020","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.engappai.2023.106312_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113710","article-title":"A study on adaptation lightweight architecture based deep learning models for bearing fault diagnosis under varying working conditions","volume":"160","author":"Wu","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2023.106312_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107927","article-title":"Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction","volume":"216","author":"Xiang","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.engappai.2023.106312_b41","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.neucom.2021.01.021","article-title":"Bi-directional skip connection feature pyramid network and sub-pixel convolution for high-quality object detection","volume":"440","author":"Xiong","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106312_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.107174","article-title":"Rolling element bearing diagnosis based on singular value decomposition and composite squared envelope spectrum","volume":"148","author":"Xu","year":"2021","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2023.106312_b43","article-title":"Memory-augmented skip-connected autoencoder for unsupervised anomaly detection of rocket engines with multi-source fusion","author":"Yan","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.engappai.2023.106312_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108278","article-title":"A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks","volume":"220","author":"Yang","year":"2022","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.engappai.2023.106312_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2021.108308","article-title":"An incipient fault diagnosis methodology using local mahalanobis distance: Detection process based on empirical probability density estimation","volume":"190","author":"Yang","year":"2022","journal-title":"Signal Process."},{"key":"10.1016\/j.engappai.2023.106312_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109084","article-title":"Regularizing autoencoders with wavelet transform for sequence anomaly detection","volume":"134","author":"Yao","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2023.106312_b47","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.ins.2022.11.151","article-title":"Ensembled masked graph autoencoders for link anomaly detection in a road network considering spatiotemporal features","volume":"622","author":"Yu","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.engappai.2023.106312_b48","article-title":"Smart anomaly detection for Slocum underwater gliders with a variational autoencoder with long short-term memory networks","volume":"120","author":"Zachary","year":"2022","journal-title":"Appl. Ocean Res."},{"key":"10.1016\/j.engappai.2023.106312_b49","unstructured":"Zhao,\u00a0Y., Hu,\u00a0X., Cheng,\u00a0C., Wan,\u00a0C., Akoglu,\u00a0L., 2021. SUOD: Accelerating large-scale unsupervised heterogeneous outlier detection. In: Conference on Machine Learning and Systems (MLSys)."},{"year":"2018","series-title":"LSCP: Locally selective combination in parallel outlier ensembles","author":"Zhao","key":"10.1016\/j.engappai.2023.106312_b50"},{"year":"2019","series-title":"PyOD: A python toolbox for scalable outlier detection","author":"Zhao","key":"10.1016\/j.engappai.2023.106312_b51"},{"key":"10.1016\/j.engappai.2023.106312_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.anucene.2021.108621","article-title":"A robust strategy for sensor fault detection in nuclear power plants based on principal component analysis","volume":"164","author":"Zhu","year":"2021","journal-title":"Ann. Nucl. Energy"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623004967?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623004967?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T05:19:44Z","timestamp":1731734384000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623004967"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":52,"alternative-id":["S0952197623004967"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106312","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel unsupervised anomaly detection method for rotating machinery based on memory augmented temporal convolutional autoencoder","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106312","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106312"}}