{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:54:18Z","timestamp":1726206858575},"reference-count":150,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.engappai.2023.106305","type":"journal-article","created":{"date-parts":[[2023,4,17]],"date-time":"2023-04-17T16:44:01Z","timestamp":1681749841000},"page":"106305","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"PA","title":["Synthetic Aperture Radar image analysis based on deep learning: A review of a decade of research"],"prefix":"10.1016","volume":"123","author":[{"given":"Alicia","family":"Passah","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8184-0623","authenticated-orcid":false,"given":"Samarendra Nath","family":"Sur","sequence":"additional","affiliation":[]},{"given":"Ajith","family":"Abraham","sequence":"additional","affiliation":[]},{"given":"Debdatta","family":"Kandar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2023.106305_b1","series-title":"2015 IEEE International Symposium on Signal Processing and Information Technology","first-page":"90","article-title":"Target detection in SAR images using SIFT","author":"Agrawal","year":"2015"},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b2","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1109\/JOE.2017.2768198","article-title":"An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery","volume":"43","author":"Ai","year":"2018","journal-title":"IEEE J. Ocean. Eng."},{"key":"10.1016\/j.engappai.2023.106305_b3","series-title":"2017 International Conference on Engineering and Technology","first-page":"1","article-title":"Understanding of a convolutional neural network","author":"Albawi","year":"2017"},{"key":"10.1016\/j.engappai.2023.106305_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104715","article-title":"A proposal of edge detection in images with multiplicative noise using the Ant Colony System algorithm","volume":"110","author":"Baltierra","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b5","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1109\/JOE.2017.2767106","article-title":"Ship classification in TerraSAR-X images with convolutional neural networks","volume":"43","author":"Bentes","year":"2018","journal-title":"IEEE J. Ocean. Eng."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b6","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/LGRS.2018.2868365","article-title":"A polarimetric extension of low-rank plus sparse decomposition and radon transform for ship wake detection in synthetic aperture radar images","volume":"16","author":"Biondi","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103615","article-title":"STDnet: Exploiting high resolution feature maps for small object detection","volume":"91","author":"Bosquet","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.106305_b8","series-title":"Deep Learning and Artificial Neural Networks","author":"Brownlee","year":"2016"},{"key":"10.1016\/j.engappai.2023.106305_b9","doi-asserted-by":"crossref","first-page":"27","DOI":"10.2528\/PIERB07110101","article-title":"An introduction to synthetic aperture radar (SAR)","volume":"2","author":"Chan","year":"2008","journal-title":"Prog. Electromagn. Res."},{"key":"10.1016\/j.engappai.2023.106305_b10","series-title":"Annual Meeting of the Envisat Symposium, Montreux, April","first-page":"23","article-title":"Analysis of man-made target detection in SAR imagery","author":"Changlin","year":"2007"},{"issue":"2","key":"10.1016\/j.engappai.2023.106305_b11","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.joes.2019.04.002","article-title":"Study of synthetic aperture radar and automatic identification system for ship target detection","volume":"4","author":"Chaturvedi","year":"2019","journal-title":"J. Ocean Eng. Sci."},{"key":"10.1016\/j.engappai.2023.106305_b12","series-title":"2014 International Conference on Data Science and Advanced Analytics","first-page":"541","article-title":"SAR target recognition based on deep learning","author":"Chen","year":"2014"},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b13","doi-asserted-by":"crossref","first-page":"4806","DOI":"10.1109\/TGRS.2016.2551720","article-title":"Target classification using the deep convolutional networks for SAR images","volume":"54","author":"Chen","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105349","article-title":"EEG-based emotion recognition using random convolutional neural networks","volume":"116","author":"Cheng","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b15","doi-asserted-by":"crossref","first-page":"1865","DOI":"10.1109\/JPROC.2017.2675998","article-title":"Remote sensing image scene classification: Benchmark and state of the art","volume":"105","author":"Cheng","year":"2017","journal-title":"Proc. IEEE"},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b16","doi-asserted-by":"crossref","first-page":"7405","DOI":"10.1109\/TGRS.2016.2601622","article-title":"Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images","volume":"54","author":"Cheng","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b17","doi-asserted-by":"crossref","first-page":"1882","DOI":"10.1109\/LGRS.2018.2865608","article-title":"Multiple feature aggregation using convolutional neural networks for SAR image-based automatic target recognition","volume":"15","author":"Cho","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.engappai.2023.106305_b18","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1109\/JOE.2005.857503","article-title":"Extraction of coastal ocean wave fields from SAR images","volume":"30","author":"Collard","year":"2005","journal-title":"IEEE J. Ocean. Eng."},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b19","doi-asserted-by":"crossref","first-page":"4884","DOI":"10.1109\/JSTARS.2018.2879082","article-title":"SAR target CFAR detection via GPU parallel operation","volume":"11","author":"Cui","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b20","first-page":"1585","article-title":"SAR unlabeled target recognition based on updating CNN with assistant decision","volume":"15","author":"Cui","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b21","doi-asserted-by":"crossref","first-page":"3323","DOI":"10.1109\/JSTARS.2017.2670083","article-title":"SAR automatic target recognition based on euclidean distance restricted autoencoder","volume":"10","author":"Deng","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"3","key":"10.1016\/j.engappai.2023.106305_b22","first-page":"364","article-title":"Convolutional neural network with data augmentation for SAR target recognition","volume":"13","author":"Ding","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b23","doi-asserted-by":"crossref","first-page":"2527","DOI":"10.1109\/TIP.2015.2421440","article-title":"Classification on the monogenic scale space: Application to target recognition in SAR image","volume":"24","author":"Dong","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b24","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/LGRS.2014.2332076","article-title":"Target recognition in SAR images via classification on Riemannian manifolds","volume":"12","author":"Dong","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b25","doi-asserted-by":"crossref","first-page":"3316","DOI":"10.1109\/JSTARS.2015.2436694","article-title":"SAR target recognition via joint sparse representation of monogenic signal","volume":"8","author":"Dong","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b26","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1109\/LSP.2014.2321565","article-title":"Sparse representation of monogenic signal: With application to target recognition in SAR images","volume":"21","author":"Dong","year":"2014","journal-title":"IEEE Signal Process. Lett."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b27","doi-asserted-by":"crossref","first-page":"3366","DOI":"10.1109\/TGRS.2019.2953936","article-title":"Saliency-guided single shot multibox detector for target detection in SAR images","volume":"58","author":"Du","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b28","doi-asserted-by":"crossref","first-page":"6014","DOI":"10.1109\/ACCESS.2016.2611492","article-title":"Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review","volume":"4","author":"El-Darymli","year":"2016","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b29","article-title":"Target detection in synthetic aperture radar imagery: A state-of-the-art survey","volume":"7","author":"El-Darymli","year":"2013","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b30","first-page":"1","article-title":"Target region segmentation in SAR vehicle chip image with ACM net","volume":"19","author":"Feng","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b31","doi-asserted-by":"crossref","first-page":"2264","DOI":"10.1109\/TGRS.2003.817188","article-title":"Scene characterization using subaperture polarimetric SAR data","volume":"41","author":"Ferro-Famil","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b32","series-title":"Dssd: Deconvolutional single shot detector","author":"Fu","year":"2017"},{"key":"10.1016\/j.engappai.2023.106305_b33","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF00344251","article-title":"A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position","volume":"36","author":"Fukushima","year":"1980","journal-title":"Biol. Cybernet."},{"key":"10.1016\/j.engappai.2023.106305_b34","series-title":"Deep learning for end-to-end automatic target recognition from synthetic aperture radar imagery","author":"Furukawa","year":"2018"},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b35","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1007\/s12559-018-9563-z","article-title":"A new algorithm for SAR image target recognition based on an improved deep convolutional neural network","volume":"11","author":"Gao","year":"2019","journal-title":"Cogn. Comput."},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b36","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1109\/TGRS.2008.2006504","article-title":"An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images","volume":"47","author":"Gao","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b37","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.neucom.2017.06.004","article-title":"A novel target detection method for SAR images based on shadow proposal and saliency analysis","volume":"267","author":"Gao","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106305_b38","series-title":"2015 IEEE International Conference on Computer Vision","first-page":"1440","article-title":"Fast R-CNN","author":"Girshick","year":"2015"},{"key":"10.1016\/j.engappai.2023.106305_b39","series-title":"2014 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"580","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014"},{"issue":"3","key":"10.1016\/j.engappai.2023.106305_b40","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/TMI.2018.2869871","article-title":"Iterative PET image reconstruction using convolutional neural network representation","volume":"38","author":"Gong","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.engappai.2023.106305_b41","series-title":"Deep Learning, Vol. 1","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.engappai.2023.106305_b42","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.patcog.2017.10.013","article-title":"Recent advances in convolutional neural networks","volume":"77","author":"Gu","year":"2018","journal-title":"Pattern Recognit."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b43","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1080\/01431161.2014.882030","article-title":"On the SAR change detection review and optimal decision","volume":"35","author":"Hachicha","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b44","series-title":"2016 IEEE International Geoscience and Remote Sensing Symposium","first-page":"1492","article-title":"Machine-learning based detection of corresponding interest points in optical and SAR images","author":"H\u00e4nsch","year":"2016"},{"key":"10.1016\/j.engappai.2023.106305_b45","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"4","key":"10.1016\/j.engappai.2023.106305_b46","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/5254.708428","article-title":"Support vector machines","volume":"13","author":"Hearst","year":"1998","journal-title":"IEEE Intell. Syst. Appl."},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b47","first-page":"1570","article-title":"SAR automatic target recognition using joint low-rank and sparse multiview denoising","volume":"15","author":"Huang","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b48","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1113\/jphysiol.1968.sp008455","article-title":"Receptive fields and functional architecture of monkey striate cortex","volume":"195","author":"Hubel","year":"1968","journal-title":"J. Physiol."},{"key":"10.1016\/j.engappai.2023.106305_b49","series-title":"ICEYE","author":"ICEYE-Finland","year":"2019"},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b50","doi-asserted-by":"crossref","first-page":"3616","DOI":"10.1109\/JSTARS.2017.2692820","article-title":"A novel ship detector based on the generalized-likelihood ratio test for SAR imagery","volume":"10","author":"Iervolino","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b51","series-title":"2015 IEEE International Geoscience and Remote Sensing Symposium","first-page":"3131","article-title":"A new GLRT-based ship detection technique in SAR images","author":"Iervolino","year":"2015"},{"key":"10.1016\/j.engappai.2023.106305_b52","series-title":"Theory of synthetic aperture radar","author":"Inc.","year":"1997"},{"key":"10.1016\/j.engappai.2023.106305_b53","doi-asserted-by":"crossref","first-page":"27085","DOI":"10.1109\/ACCESS.2021.3057654","article-title":"Prostate cancer detection using deep learning and traditional techniques","volume":"9","author":"Iqbal","year":"2021","journal-title":"IEEE Access"},{"issue":"11","key":"10.1016\/j.engappai.2023.106305_b54","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1109\/34.730558","article-title":"A model of saliency-based visual attention for rapid scene analysis","volume":"20","author":"Itti","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.106305_b55","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.procs.2019.01.229","article-title":"A deep learning fusion recognition method based on SAR image data","volume":"147","author":"Jia","year":"2019","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.engappai.2023.106305_b56","series-title":"2017 International Workshop on Remote Sensing with Intelligent Processing","first-page":"1","article-title":"A modified faster R-CNN based on CFAR algorithm for SAR ship detection","author":"Kang","year":"2017"},{"issue":"4598","key":"10.1016\/j.engappai.2023.106305_b57","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1126\/science.220.4598.671","article-title":"Optimization by simulated annealing","volume":"220","author":"Kirkpatrick","year":"1983","journal-title":"Science"},{"key":"10.1016\/j.engappai.2023.106305_b58","series-title":"Learning Multiple Layers of Features from Tiny Images","author":"Krizhevsky","year":"2009"},{"key":"10.1016\/j.engappai.2023.106305_b59","series-title":"Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b60","doi-asserted-by":"crossref","first-page":"2509","DOI":"10.1109\/JSTARS.2016.2547843","article-title":"Paddy-rice phenology classification based on machine-learning methods using multitemporal co-polar X-band SAR images","volume":"9","author":"K\u00fc\u00e7\u00fck","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b61","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1214\/aoms\/1177729694","article-title":"On information and sufficiency","volume":"22","author":"Kullback","year":"1951","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.engappai.2023.106305_b62","series-title":"MSTAR public targets","author":"Laboratory","year":"2021"},{"key":"10.1016\/j.engappai.2023.106305_b63","doi-asserted-by":"crossref","first-page":"1532","DOI":"10.3390\/rs11131532","article-title":"Deep learning for SAR image despeckling","volume":"11","author":"Lattari","year":"2019","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b64","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1109\/72.554195","article-title":"Face recognition: a convolutional neural-network approach","volume":"8","author":"Lawrence","year":"1997","journal-title":"IEEE Trans. Neural Netw."},{"issue":"7553","key":"10.1016\/j.engappai.2023.106305_b65","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"11","key":"10.1016\/j.engappai.2023.106305_b66","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"Lecun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.engappai.2023.106305_b67","series-title":"2017 SAR in Big Data Era: Models, Methods and Applications","first-page":"1","article-title":"OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in Sentinel-1 imagery","author":"Li","year":"2017"},{"key":"10.1016\/j.engappai.2023.106305_b68","series-title":"2017 IEEE 2nd International Conference on Big Data Analysis","first-page":"740","article-title":"DeepSAR-Net: Deep convolutional neural networks for SAR target recognition","author":"Li","year":"2017"},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b69","doi-asserted-by":"crossref","first-page":"3243","DOI":"10.1109\/TIP.2010.2069690","article-title":"Distance regularized level set evolution and its application to image segmentation","volume":"19","author":"Li","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b70","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1109\/LGRS.2018.2882551","article-title":"Squeeze and excitation rank faster R-CNN for ship detection in SAR images","volume":"16","author":"Lin","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b71","series-title":"Computer Vision \u2013 ECCV 2016","first-page":"21","article-title":"SSD: Single shot MultiBox detector","author":"Liu","year":"2016"},{"key":"10.1016\/j.engappai.2023.106305_b72","series-title":"PolSF: PolSAR image dataset on San Francisco","author":"Liu","year":"2019"},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b73","doi-asserted-by":"crossref","DOI":"10.3390\/rs11060702","article-title":"Convolutional neural network and guided filtering for SAR image denoising","volume":"11","author":"Liu","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b74","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1016\/j.procs.2016.07.144","article-title":"Geological disaster recognition on optical remote sensing images using deep learning","volume":"91","author":"Liu","year":"2016","journal-title":"Procedia Comput. Sci."},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b75","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3390\/rs10122043","article-title":"Ship classification and detection based on CNN using GF-3 SAR images","volume":"10","author":"Ma","year":"2018","journal-title":"Remote Sens."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b76","doi-asserted-by":"crossref","first-page":"5416","DOI":"10.3390\/rs70505416","article-title":"Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms","volume":"7","author":"Marino","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b77","series-title":"Europe Oceans 2005, Vol. 1","first-page":"90","article-title":"Oil slick detection by SAR imagery using support vector machines","author":"Mercier","year":"2005"},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b78","doi-asserted-by":"crossref","first-page":"4961","DOI":"10.1109\/TGRS.2013.2252469","article-title":"Correction and characterization of radio frequency interference signatures in L-band synthetic aperture radar data","volume":"51","author":"Meyer","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b79","doi-asserted-by":"crossref","DOI":"10.3390\/rs10081217","article-title":"Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France","volume":"10","author":"Ndikumana","year":"2018","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b80","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/19479832.2019.1655489","article-title":"Classification of SAR and polsar images using deep learning: a review","volume":"11","author":"Parikh","year":"2020","journal-title":"Int. J. Image Data Fusion"},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b81","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1049\/ipr2.12104","article-title":"SAR image despeckling using deep CNN","volume":"15","author":"Passah","year":"2021","journal-title":"IET Image Process."},{"key":"10.1016\/j.engappai.2023.106305_b82","series-title":"Automatic Target Recognition XV, Vol. 5807","first-page":"100","article-title":"MINACE filter classification algorithms for ATR using MSTAR data","author":"Patnaik","year":"2005"},{"issue":"4","key":"10.1016\/j.engappai.2023.106305_b83","doi-asserted-by":"crossref","first-page":"2196","DOI":"10.1109\/TGRS.2017.2776357","article-title":"SAR automatic target recognition based on multiview deep learning framework","volume":"56","author":"Pei","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b84","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1109\/TMI.2018.2863670","article-title":"Convolutional recurrent neural networks for dynamic MR image reconstruction","volume":"38","author":"Qin","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.engappai.2023.106305_b85","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"779","article-title":"You only look once: Unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.engappai.2023.106305_b86","series-title":"Microwave remote sensing","author":"for Remote Imaging\u00a0Sensing","year":"2001"},{"key":"10.1016\/j.engappai.2023.106305_b87","series-title":"Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1","first-page":"91","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","author":"Ren","year":"2015"},{"key":"10.1016\/j.engappai.2023.106305_b88","series-title":"2008 IEEE Radar Conference","first-page":"1","article-title":"Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the desdyni mission","author":"Rosen","year":"2008"},{"key":"10.1016\/j.engappai.2023.106305_b89","series-title":"Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370","first-page":"566","article-title":"Standard SAR ATR evaluation experiments using the MSTAR public release data set","author":"Ross","year":"1998"},{"issue":"3","key":"10.1016\/j.engappai.2023.106305_b90","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"ImageNet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"10.1016\/j.engappai.2023.106305_b91","series-title":"A comprehensive guide to convolutional neural networks","author":"Saha","year":"2018"},{"key":"10.1016\/j.engappai.2023.106305_b92","series-title":"SEN12MS\u2013A curated dataset of georeferenced multi-spectral sentinel-1\/2 imagery for deep learning and data fusion","author":"Schmitt","year":"2019"},{"key":"10.1016\/j.engappai.2023.106305_b93","doi-asserted-by":"crossref","first-page":"141","DOI":"10.5194\/isprs-annals-IV-1-141-2018","article-title":"The SEN1-2 dataset for deep learning in SAR-optical data fusion","volume":"IV-1","author":"Schmitt","year":"2018","journal-title":"ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci."},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b94","doi-asserted-by":"crossref","first-page":"3329","DOI":"10.1109\/JSTARS.2015.2417756","article-title":"Manifold adaptation for constant false alarm rate ship detection in South African oceans","volume":"8","author":"Schwegmann","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b95","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.engappai.2014.02.004","article-title":"Change detection in SAR images by artificial immune multi-objective clustering","volume":"31","author":"Shang","year":"2014","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b96","doi-asserted-by":"crossref","first-page":"2834","DOI":"10.1109\/JSTARS.2018.2836909","article-title":"SAR targets classification based on deep memory convolution neural networks and transfer parameters","volume":"11","author":"Shang","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b97","series-title":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","first-page":"768","article-title":"SpaceNet 6: Multi-sensor all weather mapping dataset","author":"Shermeyer","year":"2020"},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b98","doi-asserted-by":"crossref","first-page":"3915","DOI":"10.1109\/TGRS.2009.2023909","article-title":"PALSAR radiometric and geometric calibration","volume":"47","author":"Shimada","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b99","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.engappai.2023.106305_b100","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b101","doi-asserted-by":"crossref","first-page":"4633","DOI":"10.1007\/s11831-021-09548-z","article-title":"A review on SAR image and its despeckling","volume":"28","author":"Singh","year":"2021","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.engappai.2023.106305_b102","series-title":"The Scientist and Engineer\u2019s Guide to Digital Signal Processing","author":"Smith","year":"1997"},{"issue":"10","key":"10.1016\/j.engappai.2023.106305_b103","doi-asserted-by":"crossref","first-page":"2931","DOI":"10.1109\/JPROC.2012.2196250","article-title":"Remote sensing of ocean oil-spill pollution","volume":"100","author":"Solberg","year":"2012","journal-title":"Proc. IEEE"},{"issue":"4","key":"10.1016\/j.engappai.2023.106305_b104","doi-asserted-by":"crossref","first-page":"1916","DOI":"10.1109\/36.774704","article-title":"Automatic detection of oil spills in ERS SAR images","volume":"37","author":"Solberg","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b105","series-title":"2018 IEEE Applied Imagery Pattern Recognition Workshop","first-page":"1","article-title":"SAR target recognition with deep learning","author":"Soldin","year":"2018"},{"key":"10.1016\/j.engappai.2023.106305_b106","series-title":"Capella space","author":"Space","year":"2019"},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b107","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1109\/TAES.2013.120340","article-title":"SAR automatic target recognition using discriminative graphical models","volume":"50","author":"Srinivas","year":"2014","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"10.1016\/j.engappai.2023.106305_b108","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105157","article-title":"Survey on deep learning based computer vision for sonar imagery","volume":"114","author":"Steiniger","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"9","key":"10.1016\/j.engappai.2023.106305_b109","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1080\/2150704X.2013.804220","article-title":"On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea","volume":"4","author":"Sugimoto","year":"2013","journal-title":"Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b110","first-page":"1","article-title":"Cg-net: Conditional gis-aware network for individual building segmentation in vhr sar images","volume":"60","author":"Sun","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b111","series-title":"2015 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.engappai.2023.106305_b112","series-title":"Introduction to Radar Target Recognition, Vol. 18","author":"Tait","year":"2005"},{"key":"10.1016\/j.engappai.2023.106305_b113","series-title":"International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: Rethinking model scaling for convolutional neural networks","author":"Tan","year":"2019"},{"key":"10.1016\/j.engappai.2023.106305_b114","doi-asserted-by":"crossref","first-page":"66361","DOI":"10.1109\/ACCESS.2021.3076604","article-title":"Research on multiple-instance learning for tongue coating classification","volume":"9","author":"Tang","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.106305_b115","series-title":"SAR presents Opportunities, Challenges for GEOINT","author":"Terrie","year":"2018"},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b116","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1109\/PROC.1978.10961","article-title":"Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface","volume":"66","author":"Tomiyasu","year":"1978","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.engappai.2023.106305_b117","series-title":"Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry, Vol. 1","author":"Ulaby","year":"1981"},{"key":"10.1016\/j.engappai.2023.106305_b118","series-title":"Satellite Imaging for Maritime Surveillance of the European Seas","first-page":"343","author":"Van Wimersma\u00a0Greidanus","year":"2008"},{"key":"10.1016\/j.engappai.2023.106305_b119","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.engappai.2018.04.024","article-title":"Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification","volume":"72","author":"Vogado","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2023.106305_b120","doi-asserted-by":"crossref","first-page":"1554","DOI":"10.1093\/mnras\/stz2816","article-title":"Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning","volume":"491","author":"Walmsley","year":"2020","journal-title":"Mon. Not. R. Astron. Soc."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b121","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1109\/LGRS.2018.2867242","article-title":"SAR target detection based on SSD with data augmentation and transfer learning","volume":"16","author":"Wang","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b122","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1007\/s12524-018-0787-x","article-title":"Study on the combined application of CFAR and deep learning in ship detection","volume":"46","author":"Wang","year":"2018","journal-title":"J. Indian Soc. Remote Sens."},{"issue":"8","key":"10.1016\/j.engappai.2023.106305_b123","first-page":"67","article-title":"An adaptive and fast CFAR algorithm based on multithreading for ship detection in SAR image","volume":"10","author":"Wang","year":"2017","journal-title":"Int. J. Hybrid Inf. Technol."},{"key":"10.1016\/j.engappai.2023.106305_b124","doi-asserted-by":"crossref","first-page":"10003","DOI":"10.1109\/JSTARS.2021.3115878","article-title":"A multidirectional one-dimensional scanning method for harbor detection from SAR images","volume":"14","author":"Wang","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b125","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.1109\/LGRS.2012.2189548","article-title":"Polarimetric SAR target detection using the reflection symmetry","volume":"9","author":"Wang","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b126","doi-asserted-by":"crossref","first-page":"3377","DOI":"10.1109\/TGRS.2019.2954328","article-title":"FMSSD: Feature-merged single-shot detection for multiscale objects in large-scale remote sensing imagery","volume":"58","author":"Wang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b127","doi-asserted-by":"crossref","DOI":"10.3390\/rs11070765","article-title":"A SAR dataset of ship detection for deep learning under complex backgrounds","volume":"11","author":"Wang","year":"2019","journal-title":"Remote Sens."},{"issue":"12","key":"10.1016\/j.engappai.2023.106305_b128","doi-asserted-by":"crossref","first-page":"1763","DOI":"10.1109\/LSP.2017.2758203","article-title":"SAR image despeckling using a convolutional neural network","volume":"24","author":"Wang","year":"2017","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b129","series-title":"IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium","first-page":"7125","article-title":"Sea ice classification with convolutional neural networks using sentinel-l scansar images","author":"Wang","year":"2018"},{"issue":"11","key":"10.1016\/j.engappai.2023.106305_b130","doi-asserted-by":"crossref","first-page":"4180","DOI":"10.1109\/JSTARS.2018.2871556","article-title":"Ground target classification in noisy SAR images using convolutional neural networks","volume":"11","author":"Wang","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b131","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1109\/TGRS.2016.2554563","article-title":"Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring","volume":"55","author":"Wang","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"14","key":"10.1016\/j.engappai.2023.106305_b132","doi-asserted-by":"crossref","DOI":"10.3390\/rs13142686","article-title":"Target detection network for SAR images based on semi-supervised learning and attention mechanism","volume":"13","author":"Wei","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b133","series-title":"Radar tutorials","author":"Wolff","year":"2019"},{"issue":"6","key":"10.1016\/j.engappai.2023.106305_b134","doi-asserted-by":"crossref","first-page":"3078","DOI":"10.1109\/TGRS.2018.2790483","article-title":"OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas","volume":"56","author":"Xiang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b135","doi-asserted-by":"crossref","first-page":"27959","DOI":"10.1109\/ACCESS.2021.3058267","article-title":"Maize diseases identification method based on multi-scale convolutional global pooling neural network","volume":"9","author":"Xu","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.106305_b136","doi-asserted-by":"crossref","first-page":"10598","DOI":"10.1109\/JSTARS.2021.3118374","article-title":"Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning","volume":"14","author":"Yu","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"5","key":"10.1016\/j.engappai.2023.106305_b137","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1109\/LGRS.2016.2540809","article-title":"Superpixel-based CFAR target detection for high-resolution SAR images","volume":"13","author":"Yu","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b138","first-page":"107","article-title":"Gated CNN: Integrating multi-scale feature layers for object detection","volume":"105","author":"Yuan","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2023.106305_b139","series-title":"European Conference on Computer Vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"issue":"7","key":"10.1016\/j.engappai.2023.106305_b140","doi-asserted-by":"crossref","first-page":"B39","DOI":"10.1364\/AO.58.000B39","article-title":"Computational image speckle suppression using block matching and machine learning","volume":"58","author":"Zeng","year":"2019","journal-title":"Appl. Opt."},{"issue":"aita","key":"10.1016\/j.engappai.2023.106305_b141","doi-asserted-by":"crossref","DOI":"10.12783\/dtcse\/aita2016\/7564","article-title":"SAR automatic target recognition based on deep convolutional neural networks","author":"Zhan","year":"2016","journal-title":"DEStech Trans. Comput. Sci. Eng."},{"issue":"9","key":"10.1016\/j.engappai.2023.106305_b142","doi-asserted-by":"crossref","first-page":"5553","DOI":"10.1109\/TGRS.2016.2569141","article-title":"Weakly supervised learning based on coupled convolutional neural networks for aircraft detection","volume":"54","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.engappai.2023.106305_b143","first-page":"40","article-title":"SAR ATR based on Bayesian compressive sensing","volume":"35","author":"Zhang","year":"2013","journal-title":"Syst. Eng. Electron."},{"issue":"2","key":"10.1016\/j.engappai.2023.106305_b144","doi-asserted-by":"crossref","first-page":"196","DOI":"10.3390\/rs10020196","article-title":"Learning a dilated residual network for SAR image despeckling","volume":"10","author":"Zhang","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b145","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1109\/JSTARS.2019.2954850","article-title":"OpenSARUrban: A Sentinel-1 SAR image dataset for urban interpretation","volume":"13","author":"Zhao","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106305_b146","series-title":"Improving the robustness of deep neural networks via stability training","author":"Zheng","year":"2016"},{"issue":"9","key":"10.1016\/j.engappai.2023.106305_b147","doi-asserted-by":"crossref","first-page":"1377","DOI":"10.1109\/LGRS.2018.2840687","article-title":"Classification for SAR scene matching areas based on convolutional neural networks","volume":"15","author":"Zhong","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.engappai.2023.106305_b148","series-title":"Recall, Precision and Average Precision, Vol. 2","first-page":"6","author":"Zhu","year":"2004"},{"issue":"3","key":"10.1016\/j.engappai.2023.106305_b149","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1109\/MGRS.2020.2964708","article-title":"So2Sat LCZ42: A benchmark data set for the classification of global local climate zones [software and data sets]","volume":"8","author":"Zhu","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"issue":"4","key":"10.1016\/j.engappai.2023.106305_b150","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MGRS.2017.2762307","article-title":"Deep learning in remote sensing: A comprehensive review and list of resources","volume":"5","author":"Zhu","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Mag."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762300489X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762300489X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T23:40:28Z","timestamp":1714261228000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095219762300489X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":150,"alternative-id":["S095219762300489X"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106305","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Synthetic Aperture Radar image analysis based on deep learning: A review of a decade of research","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106305","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106305"}}