{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:55:00Z","timestamp":1732042500273},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.engappai.2023.106043","type":"journal-article","created":{"date-parts":[[2023,2,27]],"date-time":"2023-02-27T03:48:44Z","timestamp":1677469724000},"page":"106043","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Semi-supervised non-negative matrix tri-factorization with adaptive neighbors and block-diagonal learning"],"prefix":"10.1016","volume":"121","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0903-8801","authenticated-orcid":false,"given":"Songtao","family":"Li","sequence":"first","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.engappai.2023.106043_b1","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1002\/wics.101","article-title":"Principal component analysis","volume":"2","author":"Abdi","year":"2010","journal-title":"Wiley Interdiscip. Rev. Comput. Stat."},{"issue":"8","key":"10.1016\/j.engappai.2023.106043_b2","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1016\/j.jcss.2007.08.006","article-title":"Towards a theoretical foundation for Laplacian-based manifold methods","volume":"74","author":"Belkin","year":"2008","journal-title":"J. Comput. System Sci."},{"issue":"8","key":"10.1016\/j.engappai.2023.106043_b3","first-page":"1548","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2023.106043_b4","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2022.3145489","article-title":"Parallel non-negative matrix tri-factorization for text data co-clustering","author":"Chen","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.engappai.2023.106043_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107101","article-title":"Tri-regularized nonnegative matrix tri-factorization for co-clustering","volume":"226","author":"Deng","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2023.106043_b6","doi-asserted-by":"crossref","unstructured":"Ding,\u00a0C., Li,\u00a0T., Peng,\u00a0W., Park,\u00a0H., 2006. Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 126\u2013135.","DOI":"10.1145\/1150402.1150420"},{"issue":"3","key":"10.1016\/j.engappai.2023.106043_b7","doi-asserted-by":"crossref","first-page":"2391","DOI":"10.1109\/TGRS.2020.3006109","article-title":"Spectral\u2013spatial joint sparse NMF for hyperspectral unmixing","volume":"59","author":"Dong","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3\u20135","key":"10.1016\/j.engappai.2023.106043_b8","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.physrep.2009.11.002","article-title":"Community detection in graphs","volume":"486","author":"Fortunato","year":"2010","journal-title":"Phys. Rep."},{"issue":"1","key":"10.1016\/j.engappai.2023.106043_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2019\/7565640","article-title":"Constrained dual graph regularized orthogonal nonnegative matrix tri-factorization for co-clustering","volume":"2019","author":"Ge","year":"2019","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.engappai.2023.106043_b10","first-page":"1","article-title":"A survey of community detection in complex networks using nonnegative matrix factorization","author":"He","year":"2021","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"issue":"7","key":"10.1016\/j.engappai.2023.106043_b11","first-page":"2510","article-title":"Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization","volume":"31","author":"Jia","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.engappai.2023.106043_b12","doi-asserted-by":"crossref","first-page":"3002","DOI":"10.1109\/JBHI.2020.2975199","article-title":"Hyper-graph regularized constrained NMF for selecting differentially expressed genes and tumor classification","volume":"24","author":"Jiao","year":"2020","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"6755","key":"10.1016\/j.engappai.2023.106043_b13","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2023.106043_b14","first-page":"1","article-title":"Semi-supervised bi-orthogonal constraints dual-graph regularized NMF for subspace clustering","author":"Li","year":"2021","journal-title":"Appl. Intell."},{"issue":"5","key":"10.1016\/j.engappai.2023.106043_b15","doi-asserted-by":"crossref","first-page":"1947","DOI":"10.1109\/TNNLS.2017.2691725","article-title":"Robust structured nonnegative matrix factorization for image representation","volume":"29","author":"Li","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"9","key":"10.1016\/j.engappai.2023.106043_b16","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1016\/j.patrec.2009.12.023","article-title":"Nonnegative matrix factorization on orthogonal subspace","volume":"31","author":"Li","year":"2010","journal-title":"Pattern Recognit. Lett."},{"issue":"7","key":"10.1016\/j.engappai.2023.106043_b17","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TPAMI.2011.217","article-title":"Constrained nonnegative matrix factorization for image representation","volume":"34","author":"Liu","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2023.106043_b18","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1109\/TPAMI.2018.2794348","article-title":"Subspace clustering by block diagonal representation","volume":"41","author":"Lu","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.engappai.2023.106043_b19","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1007\/s10766-018-0591-9","article-title":"Charismatic document clustering through novel K-means non-negative matrix factorization (KNMF) algorithm using key phrase extraction","volume":"48","author":"Lydia","year":"2020","journal-title":"Int. J. Parallel Program."},{"key":"10.1016\/j.engappai.2023.106043_b20","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.engappai.2017.11.008","article-title":"Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints","volume":"69","author":"Meng","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.106043_b21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TKDE.2022.3206881","article-title":"Structured sparse non-negative matrix factorization with l2, 0-norm","author":"Min","year":"2022","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"7","key":"10.1016\/j.engappai.2023.106043_b22","first-page":"871","article-title":"The Laplacian spectrum of graphs","volume":"18","author":"Newman","year":"1991","journal-title":"Graph Theory Comb. Appl."},{"key":"10.1016\/j.engappai.2023.106043_b23","doi-asserted-by":"crossref","unstructured":"Nie,\u00a0F., Wang,\u00a0X., Huang,\u00a0H., 2014. Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 977\u2013986.","DOI":"10.1145\/2623330.2623726"},{"key":"10.1016\/j.engappai.2023.106043_b24","article-title":"Robust orthogonal nonnegative matrix tri-factorization for data representation","volume":"201","author":"Peng","year":"2020","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.engappai.2023.106043_b25","article-title":"Robust semi-supervised nonnegative matrix factorization for image clustering","volume":"111","author":"Peng","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2023.106043_b26","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.ins.2021.01.087","article-title":"Nonnegative matrix factorization with local similarity learning","volume":"562","author":"Peng","year":"2021","journal-title":"Inform. Sci.","ISSN":"http:\/\/id.crossref.org\/issn\/0020-0255","issn-type":"print"},{"issue":"5500","key":"10.1016\/j.engappai.2023.106043_b27","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.engappai.2023.106043_b28","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.neucom.2019.11.070","article-title":"Regularized nonnegative matrix factorization with adaptive local structure learning","volume":"382","author":"Sh","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2023.106043_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103928","article-title":"Clustering analysis using an adaptive fused distance","volume":"96","author":"Sharma","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"7","key":"10.1016\/j.engappai.2023.106043_b30","doi-asserted-by":"crossref","first-page":"7653","DOI":"10.1007\/s10489-021-02826-0","article-title":"Correntropy-based dual graph regularized nonnegative matrix factorization with Lp smoothness for data representation","volume":"52","author":"Shu","year":"2022","journal-title":"Appl. Intell."},{"key":"10.1016\/j.engappai.2023.106043_b31","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.knosys.2017.05.029","article-title":"Parameter-less auto-weighted multiple graph regularized nonnegative matrix factorization for data representation","volume":"131","author":"Shu","year":"2017","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.engappai.2023.106043_b32","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.acha.2006.03.004","article-title":"From graph to manifold Laplacian: The convergence rate","volume":"21","author":"Singer","year":"2006","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.engappai.2023.106043_b33","series-title":"A Practical Approach to Microarray Data Analysis","first-page":"91","article-title":"Singular value decomposition and principal component analysis","author":"Wall","year":"2003"},{"key":"10.1016\/j.engappai.2023.106043_b34","first-page":"1","article-title":"An entropy weighted nonnegative matrix factorization algorithm for feature representation","author":"Wei","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"12","key":"10.1016\/j.engappai.2023.106043_b35","doi-asserted-by":"crossref","first-page":"6348","DOI":"10.1109\/TNNLS.2018.2830761","article-title":"Pairwise constraint propagation-induced symmetric nonnegative matrix factorization","volume":"29","author":"Wu","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.engappai.2023.106043_b36","doi-asserted-by":"crossref","first-page":"2698","DOI":"10.1109\/TCSVT.2020.3027570","article-title":"Positive and negative label-driven nonnegative matrix factorization","volume":"31","author":"Wu","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"8","key":"10.1016\/j.engappai.2023.106043_b37","doi-asserted-by":"crossref","first-page":"3836","DOI":"10.1109\/TIP.2019.2907054","article-title":"Simultaneous dimensionality reduction and classification via dual embedding regularized nonnegative matrix factorization","volume":"28","author":"Wu","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2023.106043_b38","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.ins.2018.01.008","article-title":"Nonnegative matrix factorization with mixed hypergraph regularization for community detection","volume":"435","author":"Wu","year":"2018","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.engappai.2023.106043_b39","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TIP.2017.2764262","article-title":"Implicit block diagonal low-rank representation","volume":"27","author":"Xie","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2023.106043_b40","doi-asserted-by":"crossref","first-page":"4908","DOI":"10.1109\/JSTARS.2020.3017023","article-title":"Curvelet transform domain-based sparse nonnegative matrix factorization for hyperspectral unmixing","volume":"13","author":"Xu","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.engappai.2023.106043_b41","series-title":"Conference on Complex, Intelligent, and Software Intensive Systems","first-page":"177","article-title":"Sound source separation based on multichannel non-negative matrix factorization with weighted averaging","author":"Yamamoto","year":"2020"},{"key":"10.1016\/j.engappai.2023.106043_b42","doi-asserted-by":"crossref","unstructured":"Ye,\u00a0F., Chen,\u00a0C., Zheng,\u00a0Z., 2018. Deep autoencoder-like nonnegative matrix factorization for community detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. pp. 1393\u20131402.","DOI":"10.1145\/3269206.3271697"},{"issue":"8","key":"10.1016\/j.engappai.2023.106043_b43","doi-asserted-by":"crossref","first-page":"3952","DOI":"10.1109\/TCYB.2020.3000799","article-title":"Correntropy-based hypergraph regularized NMF for clustering and feature selection on multi-cancer integrated data","volume":"51","author":"Yu","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.engappai.2023.106043_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104499","article-title":"Multiple graph regularized semi-supervised nonnegative matrix factorization with adaptive weights for clustering","volume":"106","author":"Zhang","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2023.106043_b45","doi-asserted-by":"crossref","first-page":"4257","DOI":"10.1109\/JSTARS.2020.3011257","article-title":"Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing","volume":"13","author":"Zhou","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"2","key":"10.1016\/j.engappai.2023.106043_b46","doi-asserted-by":"crossref","first-page":"1201","DOI":"10.1007\/s10462-020-09874-x","article-title":"Data stream clustering: a review","volume":"54","author":"Zubaro\u011flu","year":"2021","journal-title":"Artif. Intell. Rev."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623002270?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623002270?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T05:47:41Z","timestamp":1728971261000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623002270"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":46,"alternative-id":["S0952197623002270"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106043","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semi-supervised non-negative matrix tri-factorization with adaptive neighbors and block-diagonal learning","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.106043","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106043"}}