{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:15:01Z","timestamp":1728177301409},"reference-count":75,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003052","name":"Ministry of Trade, Industry and Energy","doi-asserted-by":"publisher","award":["20012355"],"id":[{"id":"10.13039\/501100003052","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003621","name":"Ministry of Science, ICT and Future Planning","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010418","name":"Institute for Information and Communications Technology Promotion","doi-asserted-by":"publisher","award":["2020-0-01373"],"id":[{"id":"10.13039\/501100010418","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.engappai.2023.105909","type":"journal-article","created":{"date-parts":[[2023,2,3]],"date-time":"2023-02-03T17:49:47Z","timestamp":1675446587000},"page":"105909","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Novel three-axis accelerometer-based silent speech interface using deep neural network"],"prefix":"10.1016","volume":"120","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0705-7299","authenticated-orcid":false,"given":"Jinuk","family":"Kwon","sequence":"first","affiliation":[]},{"given":"Hyerin","family":"Nam","sequence":"additional","affiliation":[]},{"given":"Younsoo","family":"Chae","sequence":"additional","affiliation":[]},{"given":"Seungjae","family":"Lee","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9580-7074","authenticated-orcid":false,"given":"In Young","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3795-3318","authenticated-orcid":false,"given":"Chang-Hwan","family":"Im","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2023.105909_b1","series-title":"Beyond fine tuning: A modular approach to learning on small data","author":"Anderson","year":"2016"},{"issue":"584","key":"10.1016\/j.engappai.2023.105909_b2","article-title":"Enhanced accuracy for multiclass mental workload detection using long short-term memory for brain\u2013computer interface","volume":"14","author":"Asgher","year":"2020","journal-title":"Front. Neurosci."},{"issue":"7","key":"10.1016\/j.engappai.2023.105909_b3","doi-asserted-by":"crossref","first-page":"2631","DOI":"10.1109\/TCYB.2018.2831447","article-title":"Describing video with attention-based bidirectional LSTM","volume":"49","author":"Bin","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"12","key":"10.1016\/j.engappai.2023.105909_b4","doi-asserted-by":"crossref","first-page":"2404","DOI":"10.1109\/TASLP.2018.2865609","article-title":"Non-invasive silent phoneme recognition using microwave signals","volume":"26","author":"Birkholz","year":"2018","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.engappai.2023.105909_b5","doi-asserted-by":"crossref","unstructured":"Cai,\u00a0W., Cai,\u00a0D., Huang,\u00a0S., Li,\u00a0M., 2019. Utterance-level End-to-end Language Identification Using Attention-based CNN-BLSTM. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, Brighton, UK.","DOI":"10.1109\/ICASSP.2019.8682386"},{"key":"10.1016\/j.engappai.2023.105909_b6","doi-asserted-by":"crossref","unstructured":"Dahl,\u00a0G.E., Sainath,\u00a0T.N., Hinton,\u00a0G.E., 2013. Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, Vancouver, BC, Canada.","DOI":"10.1109\/ICASSP.2013.6639346"},{"key":"10.1016\/j.engappai.2023.105909_b7","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.gaitpost.2017.12.028","article-title":"Calibration of raw accelerometer data to measure physical activity: A systematic review","volume":"61","author":"de Almeida Mendes","year":"2018","journal-title":"Gait Posture"},{"key":"10.1016\/j.engappai.2023.105909_b8","doi-asserted-by":"crossref","unstructured":"Dehzangi,\u00a0O., Sahu,\u00a0V., 2018. IMU-Based Robust Human Activity Recognition using Feature Analysis, Extraction, and Reduction. In: 2018 24th Int. Conf. Pattern Recognit. ICPR, Beijing, China..","DOI":"10.1109\/ICPR.2018.8546311"},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b9","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.specom.2009.08.002","article-title":"Silent speech interfaces","volume":"52","author":"Denby","year":"2010","journal-title":"Speech Commun."},{"key":"10.1016\/j.engappai.2023.105909_b10","doi-asserted-by":"crossref","unstructured":"Dong,\u00a0W., Zhang,\u00a0H., Liu,\u00a0H., Chen,\u00a0T., Sun,\u00a0L., 2019. A Super-Flexible and High-Sensitive Epidermal sEMG Electrode Patch for Silent Speech Recognition. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems. MEMS, Seoul, Korea.","DOI":"10.1109\/MEMSYS.2019.8870672"},{"issue":"11","key":"10.1016\/j.engappai.2023.105909_b11","doi-asserted-by":"crossref","first-page":"2411","DOI":"10.1109\/TNSRE.2020.3027004","article-title":"Zero-shot learning for EEG classification in motor imagery-based BCI system","volume":"28","author":"Duan","year":"2020","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.engappai.2023.105909_b12","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1109\/LAWP.2010.2040574","article-title":"Ultrawideband speech sensing","volume":"8","author":"Eid","year":"2009","journal-title":"IEEE Antennas Wirel. Propag. Lett."},{"key":"10.1016\/j.engappai.2023.105909_b13","article-title":"Developing phoneme-based lip-reading sentences system for silent speech recognition","author":"El-Bialy","year":"2022","journal-title":"CAAI Trans. Intell. Technol."},{"issue":"5","key":"10.1016\/j.engappai.2023.105909_b14","doi-asserted-by":"crossref","first-page":"83","DOI":"10.3390\/jimaging7050083","article-title":"Variational autoencoder for image-based augmentation of eye-tracking data","volume":"7","author":"Elbattah","year":"2021","journal-title":"J. Imaging"},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b15","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0175025","article-title":"Predicting 3D lip shapes using facial surface EMG","volume":"12","author":"Eskes","year":"2017","journal-title":"PLoS One"},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b16","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1016\/j.medengphy.2007.05.003","article-title":"Development of a (silent) speech recognition system for patients following laryngectomy","volume":"30","author":"Fagan","year":"2008","journal-title":"Med. Eng. Phys."},{"issue":"2","key":"10.1016\/j.engappai.2023.105909_b17","doi-asserted-by":"crossref","first-page":"649","DOI":"10.3390\/s22020649","article-title":"Exploring silent speech interfaces based on frequency-modulated continuous-wave radar","volume":"22","author":"Ferreira","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2023.105909_b18","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2020.3026579","article-title":"Silent speech interfaces for speech restoration: A review","volume":"8","author":"Gonzalez-Lopez","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2023.105909_b19","doi-asserted-by":"crossref","unstructured":"Gosztolya,\u00a0G., P,\u00a0\u00c1., T\u00f3th,\u00a0L., Gr\u00f3sz,\u00a0T., Mark\u00f3,\u00a0A., Csap\u00f3,\u00a0T.G., 2019. Autoencoder-Based Articulatory-to-Acoustic Mapping for Ultrasound Silent Speech Interfaces. In: 2019 International Joint Conference on Neural Networks. IJCNN, Budapest, Hungary.","DOI":"10.1109\/IJCNN.2019.8852153"},{"key":"10.1016\/j.engappai.2023.105909_b20","doi-asserted-by":"crossref","unstructured":"Graves,\u00a0A., Mohamed,\u00a0A., Hinton,\u00a0G., 2013. Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, Vancouver, BC, Canada.","DOI":"10.1109\/ICASSP.2013.6638947"},{"key":"10.1016\/j.engappai.2023.105909_b21","doi-asserted-by":"crossref","unstructured":"Guo,\u00a0Z., Liu,\u00a0P., Yang,\u00a0J., Hu,\u00a0Y., 2020. Multivariate time series classification based on MCNN-LSTMS network. In: Proc. 12th Int. Conf. Mach. Learn. Comput. ICMLC, Shenzhen, China.","DOI":"10.1145\/3383972.3384013"},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b22","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/12\/4\/046005","article-title":"User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control","volume":"12","author":"He","year":"2015","journal-title":"J. Neural Eng."},{"issue":"429","key":"10.1016\/j.engappai.2023.105909_b23","article-title":"Automatic speech recognition from neural signals: A focused review","volume":"10","author":"Herff","year":"2016","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.engappai.2023.105909_b24","doi-asserted-by":"crossref","unstructured":"Hua,\u00a0S., Wang,\u00a0C., Xu,\u00a0B., Zhan,\u00a0W., 2021. An analysis of sEMG-based gestures classification with different influencing factors. In: 2021 40th Chinese Control Conference. CCC, Shanghai, China..","DOI":"10.23919\/CCC52363.2021.9549296"},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b25","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.specom.2009.11.004","article-title":"Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips","volume":"52","author":"Hueber","year":"2010","journal-title":"Speech Commun."},{"issue":"2","key":"10.1016\/j.engappai.2023.105909_b26","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1109\/LRA.2016.2530793","article-title":"The soft-SixthFinger: A wearable EMG controlled robotic extra-finger for grasp compensation in chronic stroke patients","volume":"1","author":"Hussain","year":"2016","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.engappai.2023.105909_b27","series-title":"Method and apparatus for recognizing silent speech","author":"Im","year":"2020"},{"key":"10.1016\/j.engappai.2023.105909_b28","unstructured":"Ioffe,\u00a0S., Szegedy,\u00a0C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proc. 32nd Int. Conf. Mach. Learn. ICML, Lille, France."},{"issue":"12","key":"10.1016\/j.engappai.2023.105909_b29","doi-asserted-by":"crossref","first-page":"2375","DOI":"10.1109\/TASLP.2017.2738568","article-title":"EMG-to-speech: Direct generation of speech from facial electromyographic signals","volume":"25","author":"Janke","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.engappai.2023.105909_b30","doi-asserted-by":"crossref","unstructured":"Janke,\u00a0M., Wand,\u00a0M., Schultz,\u00a0T., 2010. Impact of lack of acoustic feedback in EMG-based silent speech recognition. In: Proc. 11th Annu. Conf. Int. Speech Commun. Assoc. Interspeech 2010, Makuhari, Chiba, Japan.","DOI":"10.21437\/Interspeech.2010-712"},{"key":"10.1016\/j.engappai.2023.105909_b31","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.specom.2018.02.002","article-title":"Updating the silent speech challenge benchmark with deep learning","volume":"98","author":"Ji","year":"2018","journal-title":"Speech Commun."},{"key":"10.1016\/j.engappai.2023.105909_b32","doi-asserted-by":"crossref","unstructured":"Johnson,\u00a0D.A., Trivedi,\u00a0M.M., 2011. Driving style recognition using a smartphone as a sensor platform. In: Proc. 14th Int. IEEE Conf. Intell. Transp. Syst. ITSC, Washington, DC, USA.","DOI":"10.1109\/ITSC.2011.6083078"},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b33","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.bbe.2018.11.010","article-title":"A speech recognition system based on electromyography for the rehabilitation of dysarthric patients: A Thai syllable study","volume":"39","author":"Jong","year":"2019","journal-title":"Biocybern. Biomed. Eng."},{"key":"10.1016\/j.engappai.2023.105909_b34","doi-asserted-by":"crossref","unstructured":"Jose,\u00a0N., Raj,\u00a0R., Adithya,\u00a0P., Sivanadan,\u00a0K., 2017. Classification of forearm movements from sEMG time domain features using machine learning algorithms. In: TENCON 2017-2017 IEEE Region 10 Conference, Penang, Malaysia.","DOI":"10.1109\/TENCON.2017.8228118"},{"key":"10.1016\/j.engappai.2023.105909_b35","doi-asserted-by":"crossref","unstructured":"Jou,\u00a0S.-C., Schultz,\u00a0T., Walliczek,\u00a0M., Kraft,\u00a0F., Waibel,\u00a0A., 2006. Towards continuous speech recognition using surface electromyography. In: Proc. 9th Int. Conf. Spoken Language Process. Interspeech 2006 - ICSLP, Pittsburgh, PA, USA.","DOI":"10.21437\/Interspeech.2006-212"},{"key":"10.1016\/j.engappai.2023.105909_b36","doi-asserted-by":"crossref","unstructured":"Kapur,\u00a0A., Kapur,\u00a0S., Maes,\u00a0P., 2018. AlterEgo: A Personalized Wearable Silent Speech Interface. In: Proc. 23rd Int. Conf. Intell. User Interfaces, Tokyo, Japan.","DOI":"10.1145\/3172944.3172977"},{"issue":"12","key":"10.1016\/j.engappai.2023.105909_b37","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1109\/TASLP.2017.2758999","article-title":"Speaker-independent silent speech recognition from flesh-point articulatory movements using an LSTM neural network","volume":"25","author":"Kim","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.engappai.2023.105909_b38","doi-asserted-by":"crossref","unstructured":"Kimura,\u00a0N., Hayashi,\u00a0K., Rekimoto,\u00a0J., 2020. TieLent: A Casual Neck-Mounted Mouth Capturing Device for Silent Speech Interaction. In: Proceedings of the International Conference on Advanced Visual Interfaces. AVI, Salerno, Italy.","DOI":"10.1145\/3399715.3399852"},{"key":"10.1016\/j.engappai.2023.105909_b39","doi-asserted-by":"crossref","unstructured":"Kimura,\u00a0N., Kono,\u00a0M., Rekimoto,\u00a0J., 2019. SottoVoce: An Ultrasound Imaging-Based Silent Speech Interaction Using Deep Neural Networks. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst. Glasgow, Scotland, Uk.","DOI":"10.1145\/3290605.3300376"},{"key":"10.1016\/j.engappai.2023.105909_b40","series-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"key":"10.1016\/j.engappai.2023.105909_b41","doi-asserted-by":"crossref","DOI":"10.3389\/fnhum.2021.646915","article-title":"Subject-independent functional near-infrared spectroscopy-based brain\u2013computer interfaces based on convolutional neural networks","volume":"15","author":"Kwon","year":"2021","journal-title":"Front. Hum. Neurosci."},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b42","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1002\/ima.22337","article-title":"Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling","volume":"29","author":"Li","year":"2019","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"10.1016\/j.engappai.2023.105909_b43","series-title":"Network in network","author":"Lin","year":"2013"},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b44","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41378-019-0127-5","article-title":"An epidermal sEMG tattoo-like patch as a new human\u2013machine interface for patients with loss of voice","volume":"6","author":"Liu","year":"2020","journal-title":"Microsyst. Nanoeng."},{"issue":"5","key":"10.1016\/j.engappai.2023.105909_b45","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/abb580","article-title":"Data augmentation for enhancing EEG-based emotion recognition with deep generative models","volume":"17","author":"Luo","year":"2020","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.engappai.2023.105909_b46","unstructured":"Maas,\u00a0A.L., Hannun,\u00a0A.Y., Ng,\u00a0A.Y., 2013. Rectifier nonlinearities improve neural network acoustic models. In: Proc. 30th Int. Conf. Mach. Learn. ICML, Atlanta, GA, USA."},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b47","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aac965","article-title":"Development of sEMG sensors and algorithms for silent speech recognition","volume":"15","author":"Meltzner","year":"2018","journal-title":"J. Neural Eng."},{"issue":"12","key":"10.1016\/j.engappai.2023.105909_b48","doi-asserted-by":"crossref","first-page":"2386","DOI":"10.1109\/TASLP.2017.2740000","article-title":"Silent speech recognition as an alternative communication device for persons with laryngectomy","volume":"25","author":"Meltzner","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.engappai.2023.105909_b49","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.protcy.2013.12.159","article-title":"The effect of data pre-processing on optimized training of artificial neural networks","volume":"11","author":"Nawi","year":"2013","journal-title":"Proc. Technol."},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b50","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1186\/1743-0003-9-21","article-title":"A review of wearable sensors and systems with application in rehabilitation","volume":"9","author":"Patel","year":"2012","journal-title":"J. Neuroeng. Rehabil."},{"issue":"4","key":"10.1016\/j.engappai.2023.105909_b51","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1080\/2326263X.2019.1698928","article-title":"Development of a ternary hybrid fNIRS-EEG brain\u2013computer interface based on imagined speech","volume":"6","author":"Rezazadeh Sereshkeh","year":"2019","journal-title":"Brain-Comput. Interfaces"},{"key":"10.1016\/j.engappai.2023.105909_b52","doi-asserted-by":"crossref","unstructured":"Sayin,\u00a0F.S., Ozen,\u00a0S., Baspinar,\u00a0U., 2018. Hand gesture recognition by using sEMG signals for human machine interaction applications. In: 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications. SPA, Poznan, Poland.","DOI":"10.23919\/SPA.2018.8563394"},{"issue":"12","key":"10.1016\/j.engappai.2023.105909_b53","doi-asserted-by":"crossref","first-page":"2257","DOI":"10.1109\/TASLP.2017.2752365","article-title":"Biosignal-based spoken communication: A survey","volume":"25","author":"Schultz","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"issue":"11","key":"10.1016\/j.engappai.2023.105909_b54","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1109\/78.650093","article-title":"Bidirectional recurrent neural networks","volume":"45","author":"Schuster","year":"1997","journal-title":"IEEE Trans. Signal Process."},{"issue":"11","key":"10.1016\/j.engappai.2023.105909_b55","doi-asserted-by":"crossref","first-page":"1812","DOI":"10.3390\/s16111812","article-title":"Towards contactless silent speech recognition based on detection of active and visible articulators using IR-UWB radar","volume":"16","author":"Shin","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2023.105909_b56","doi-asserted-by":"crossref","DOI":"10.3389\/fninf.2021.777977","article-title":"Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models","volume":"15","author":"Shoeibi","year":"2021","journal-title":"Front. Neuroinform."},{"key":"10.1016\/j.engappai.2023.105909_b57","doi-asserted-by":"crossref","unstructured":"Sobhani,\u00a0M.R., Ozum,\u00a0H.E., Yaralioglu,\u00a0G.G., Ergun,\u00a0A.S., Bozkurt,\u00a0A., 2016. Portable low cost ultrasound imaging system. In: Proc. IEEE Int. Ultrason. Symp. IUS, Tours, France.","DOI":"10.1109\/ULTSYM.2016.7728837"},{"key":"10.1016\/j.engappai.2023.105909_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104298","article-title":"Decoding silent speech from high-density surface electromyographic data using transformer","volume":"80","author":"Song","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"issue":"2","key":"10.1016\/j.engappai.2023.105909_b59","doi-asserted-by":"crossref","first-page":"556","DOI":"10.3758\/s13428-018-1144-2","article-title":"1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits","volume":"51","author":"Startsev","year":"2019","journal-title":"Behav. Res. Methods"},{"issue":"8","key":"10.1016\/j.engappai.2023.105909_b60","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1186\/s12859-018-2195-1","article-title":"Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction","volume":"19","author":"Su\u00e1rez-Paniagua","year":"2018","journal-title":"BMC Bioinformatics"},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b61","doi-asserted-by":"crossref","first-page":"9","DOI":"10.15837\/ijccc.2020.1.3712","article-title":"A stochastic max pooling strategy for convolutional neural network trained by noisy samples","volume":"15","author":"Sun","year":"2020","journal-title":"Int. J. Comput. Commun. Control"},{"key":"10.1016\/j.engappai.2023.105909_b62","doi-asserted-by":"crossref","unstructured":"Sun,\u00a0K., Yu,\u00a0C., Shi,\u00a0W., Liu,\u00a0L., Shi,\u00a0Y., 2018. Lip-Interact: Improving Mobile Device Interaction with Silent Speech Commands. In: Proc. 31st Annu. ACM Symp. User Interface Softw. Technol. Berlin, Germany.","DOI":"10.1145\/3242587.3242599"},{"key":"10.1016\/j.engappai.2023.105909_b63","doi-asserted-by":"crossref","unstructured":"Sung,\u00a0F., Yang,\u00a0Y., Zhang,\u00a0L., Xiang,\u00a0T., Torr,\u00a0P.H., Hospedales,\u00a0T.M., 2018. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA.","DOI":"10.1109\/CVPR.2018.00131"},{"key":"10.1016\/j.engappai.2023.105909_b64","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1016\/j.procs.2018.05.041","article-title":"Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals","volume":"132","author":"Swapna","year":"2018","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.engappai.2023.105909_b65","doi-asserted-by":"crossref","unstructured":"Tong,\u00a0C., Tailor,\u00a0S.A., Lane,\u00a0N.D., 2020. Are Accelerometers for Activity Recognition a Dead-end?. In: Proc. 21st Int. Workshop Mob. Comput. Syst. Appl. Austin, TX, USA.","DOI":"10.1145\/3376897.3377867"},{"issue":"11","key":"10.1016\/j.engappai.2023.105909_b66","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1007\/s40430-018-1445-5","article-title":"MEMS accelerometers for mechanical vibrations analysis: A comprehensive review with applications","volume":"40","author":"Varanis","year":"2018","journal-title":"J. Braz. Soc. Mech. Sci. Eng."},{"key":"10.1016\/j.engappai.2023.105909_b67","doi-asserted-by":"crossref","unstructured":"Wand,\u00a0M., Koutn\u00edk,\u00a0J., Schmidhuber,\u00a0J., 2016. Lipreading with long short-term memory. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP, Shanghai, China.","DOI":"10.1109\/ICASSP.2016.7472852"},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b68","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1186\/s13634-019-0649-x","article-title":"High-resolution image reconstruction for portable ultrasound imaging devices","volume":"2019","author":"Wang","year":"2019","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"7","key":"10.1016\/j.engappai.2023.105909_b69","doi-asserted-by":"crossref","first-page":"442","DOI":"10.3390\/brainsci10070442","article-title":"Silent speech decoding using spectrogram features based on neuromuscular activities","volume":"10","author":"Wang","year":"2020","journal-title":"Brain Sci."},{"key":"10.1016\/j.engappai.2023.105909_b70","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102587","article-title":"A comparison of neural networks algorithms for EEG and sEMG features based gait phases recognition","volume":"68","author":"Wei","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"issue":"1253","key":"10.1016\/j.engappai.2023.105909_b71","article-title":"A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis","volume":"14","author":"Xu","year":"2020","journal-title":"Front. Neurosci."},{"issue":"2","key":"10.1016\/j.engappai.2023.105909_b72","doi-asserted-by":"crossref","first-page":"273","DOI":"10.3390\/s17020273","article-title":"Learning to monitor machine health with convolutional bi-directional LSTM networks","volume":"17","author":"Zhao","year":"2017","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2023.105909_b73","doi-asserted-by":"crossref","first-page":"24713","DOI":"10.1109\/ACCESS.2020.2971064","article-title":"A hybrid CNN\u2013LSTM network for the classification of human activities based on micro-Doppler radar","volume":"8","author":"Zhu","year":"2020","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.engappai.2023.105909_b74","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/abca14","article-title":"Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography","volume":"18","author":"Zhu","year":"2021","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.engappai.2023.105909_b75","doi-asserted-by":"crossref","unstructured":"Zhuang,\u00a0J., Zhu,\u00a0M., Wang,\u00a0X., Wang,\u00a0D., Yang,\u00a0Z., Wang,\u00a0X., Qi,\u00a0L., Chen,\u00a0S., Li,\u00a0G., 2019. Comparison of Contributions between Facial and Neck Muscles for Speech Recognition Using High-Density surface Electromyography. In: 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications. CIVEMSA, Tianjin, China.","DOI":"10.1109\/CIVEMSA45640.2019.9071636"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623000933?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197623000933?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T23:29:05Z","timestamp":1714260545000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197623000933"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":75,"alternative-id":["S0952197623000933"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2023.105909","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Novel three-axis accelerometer-based silent speech interface using deep neural network","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2023.105909","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105909"}}