{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,30]],"date-time":"2025-04-30T07:09:29Z","timestamp":1745996969766,"version":"3.37.3"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71671029"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.engappai.2022.105776","type":"journal-article","created":{"date-parts":[[2022,12,29]],"date-time":"2022-12-29T22:44:30Z","timestamp":1672353870000},"page":"105776","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Combined framework based on data preprocessing and multi-objective optimizer for electricity load forecasting"],"prefix":"10.1016","volume":"119","author":[{"given":"Yurui","family":"Xia","sequence":"first","affiliation":[]},{"given":"Jianzhou","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Danxiang","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Ziyuan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2022.105776_b1","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.asoc.2014.05.028","article-title":"A moving-average filter based hybrid ARIMA\u2013ANN model for forecasting time series data","volume":"23","author":"Babu","year":"2014","journal-title":"Appl. Soft Comput."},{"issue":"7","key":"10.1016\/j.engappai.2022.105776_b2","doi-asserted-by":"crossref","first-page":"1636","DOI":"10.3390\/en11071636","article-title":"Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches","volume":"11","author":"Bouktif","year":"2018","journal-title":"Energies"},{"issue":"1","key":"10.1016\/j.engappai.2022.105776_b3","doi-asserted-by":"crossref","first-page":"149","DOI":"10.3390\/en12010149","article-title":"Single and multi-sequence deep learning models for short and medium term electric load forecasting","volume":"12","author":"Bouktif","year":"2019","journal-title":"Energies"},{"issue":"2","key":"10.1016\/j.engappai.2022.105776_b4","doi-asserted-by":"crossref","first-page":"391","DOI":"10.3390\/en13020391","article-title":"Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting","volume":"13","author":"Bouktif","year":"2020","journal-title":"Energies"},{"issue":"1","key":"10.1016\/j.engappai.2022.105776_b5","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/j.renene.2008.03.014","article-title":"Short term wind speed forecasting in La Venta, Oaxaca, M\u00e9xico, using artificial neural networks","volume":"34","author":"Cadenas","year":"2009","journal-title":"Renew. Energy"},{"issue":"3","key":"10.1016\/j.engappai.2022.105776_b6","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TSP.2013.2288675","article-title":"Variational mode decomposition","volume":"62","author":"Dragomiretskiy","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"issue":"6","key":"10.1016\/j.engappai.2022.105776_b7","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1021\/ac00205a007","article-title":"General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method","volume":"62","author":"Gorry","year":"1990","journal-title":"Anal. Chem."},{"key":"10.1016\/j.engappai.2022.105776_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2019.106941","article-title":"Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator","volume":"149","author":"Gu","year":"2020","journal-title":"Measurement"},{"issue":"1971","key":"10.1016\/j.engappai.2022.105776_b9","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1098\/rspa.1998.0193","article-title":"The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis","volume":"454","author":"Huang","year":"1998","journal-title":"Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci."},{"key":"10.1016\/j.engappai.2022.105776_b10","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ijepes.2015.11.046","article-title":"Daily peak electricity demand forecasting based on an adaptive hybrid two-stage methodology","volume":"77","author":"Laouafi","year":"2016","journal-title":"Int. J. Electr. Power Energy Syst."},{"issue":"1","key":"10.1016\/j.engappai.2022.105776_b11","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1109\/3477.907576","article-title":"Knowledge discovery in time series databases","volume":"31","author":"Last","year":"2001","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"key":"10.1016\/j.engappai.2022.105776_b12","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1016\/j.energy.2018.09.027","article-title":"A combination model with variable weight optimization for short-term electrical load forecasting","volume":"164","author":"Li","year":"2018","journal-title":"Energy"},{"key":"10.1016\/j.engappai.2022.105776_b13","doi-asserted-by":"crossref","first-page":"166753","DOI":"10.1109\/ACCESS.2020.3023306","article-title":"Fault diagnosis of rolling bearing based on GA-VMD and improved WOA-LSSVM","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2022.105776_b14","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1016\/j.apenergy.2014.05.023","article-title":"A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids","volume":"129","author":"Liu","year":"2014","journal-title":"Appl. Energy"},{"key":"10.1016\/j.engappai.2022.105776_b15","first-page":"1","article-title":"A newly combination model based on data denoising strategy and advanced optimization algorithm for short-term wind speed prediction","author":"Lv","year":"2022","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.engappai.2022.105776_b16","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","article-title":"The whale optimization algorithm","volume":"95","author":"Mirjalili","year":"2016","journal-title":"Adv. Eng. Softw."},{"key":"10.1016\/j.engappai.2022.105776_b17","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.advengsoft.2013.12.007","article-title":"Grey wolf optimizer","volume":"69","author":"Mirjalili","year":"2014","journal-title":"Adv. Eng. Softw."},{"issue":"1","key":"10.1016\/j.engappai.2022.105776_b18","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1002\/2475-8876.12135","article-title":"Electricity load forecasting using clustering and ARIMA model for energy management in buildings","volume":"3","author":"Nepal","year":"2020","journal-title":"Japan Archit. Rev."},{"issue":"13","key":"10.1016\/j.engappai.2022.105776_b19","doi-asserted-by":"crossref","first-page":"2467","DOI":"10.3390\/en12132467","article-title":"Research and application of a novel hybrid model based on a deep neural network for electricity load forecasting: a case study in Australia","volume":"12","author":"Ni","year":"2019","journal-title":"Energies"},{"issue":"5","key":"10.1016\/j.engappai.2022.105776_b20","doi-asserted-by":"crossref","first-page":"4754","DOI":"10.1109\/TPWRS.2021.3067551","article-title":"Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France","volume":"36","author":"Obst","year":"2021","journal-title":"IEEE Trans. Power Syst."},{"issue":"17","key":"10.1016\/j.engappai.2022.105776_b21","doi-asserted-by":"crossref","first-page":"2669","DOI":"10.1016\/j.enconman.2005.02.004","article-title":"Support vector machines with simulated annealing algorithms in electricity load forecasting","volume":"46","author":"Pai","year":"2005","journal-title":"Energy Convers. Manage."},{"issue":"3","key":"10.1016\/j.engappai.2022.105776_b22","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.epsr.2009.09.006","article-title":"Electricity demand load forecasting of the hellenic power system using an ARMA model","volume":"80","author":"Pappas","year":"2010","journal-title":"Electr. Power Syst. Res."},{"issue":"1","key":"10.1016\/j.engappai.2022.105776_b23","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1006\/mssp.1998.9999","article-title":"Iterative SVD method for noise reduction of low-dimensional chaotic time series","volume":"13","author":"Shin","year":"1999","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2022.105776_b24","doi-asserted-by":"crossref","first-page":"758","DOI":"10.1016\/j.renene.2019.01.031","article-title":"Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting","volume":"136","author":"Singh","year":"2019","journal-title":"Renew. Energy"},{"key":"10.1016\/j.engappai.2022.105776_b25","article-title":"Saturated electricity demand forecast based on amended self-adaptive logistic model","author":"Taihua","year":"2017","journal-title":"Electr. Power"},{"key":"10.1016\/j.engappai.2022.105776_b26","doi-asserted-by":"crossref","unstructured":"Taylor,\u00a0G.W., Hinton,\u00a0G.E., 2009. Factored conditional restricted Boltzmann machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp. 1025\u20131032.","DOI":"10.1145\/1553374.1553505"},{"issue":"9","key":"10.1016\/j.engappai.2022.105776_b27","doi-asserted-by":"crossref","first-page":"2549","DOI":"10.1109\/78.709544","article-title":"On time-dependent wavelet denoising","volume":"46","author":"Vidakovic","year":"1998","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.engappai.2022.105776_b28","series-title":"Advanced Materials Research, Vol. 971","first-page":"2242","article-title":"Application of GRNN neural network in short term load forecasting","author":"Wang","year":"2014"},{"key":"10.1016\/j.engappai.2022.105776_b29","first-page":"270","article-title":"Prediction of air pollution interval based on data preprocessing and multi-objective dragonfly optimization algorithm","author":"Wang","year":"2022","journal-title":"Front. Ecol. Evol."},{"key":"10.1016\/j.engappai.2022.105776_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.121027","article-title":"A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China","volume":"260","author":"Wang","year":"2020","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.engappai.2022.105776_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2021.121275","article-title":"A novel combined model for wind speed prediction\u2013combination of linear model, shallow neural networks, and deep learning approaches","volume":"234","author":"Wang","year":"2021","journal-title":"Energy"},{"key":"10.1016\/j.engappai.2022.105776_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2021.117911","article-title":"Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm","volume":"305","author":"Wang","year":"2022","journal-title":"Appl. Energy"},{"key":"10.1016\/j.engappai.2022.105776_b33","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/7414318","article-title":"Parallel LSTM-based regional integrated energy system multienergy source-load information interactive energy prediction","volume":"2019","author":"Wang","year":"2019","journal-title":"Complexity"},{"issue":"16","key":"10.1016\/j.engappai.2022.105776_b34","first-page":"3388","article-title":"Prediction and analysis of energy demand of high energy density AC\/DC park based on spatial static load forecasting method","volume":"2019","author":"Xiao","year":"2019","journal-title":"J. Eng."},{"key":"10.1016\/j.engappai.2022.105776_b35","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.neucom.2019.02.063","article-title":"Short-term power load forecasting based on elman neural network with particle swarm optimization","volume":"416","author":"Xie","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2022.105776_b36","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.enconman.2017.01.022","article-title":"A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting","volume":"136","author":"Zhang","year":"2017","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.engappai.2022.105776_b37","doi-asserted-by":"crossref","first-page":"774","DOI":"10.1016\/j.energy.2018.06.012","article-title":"Short term electricity load forecasting using a hybrid model","volume":"158","author":"Zhang","year":"2018","journal-title":"Energy"},{"issue":"8","key":"10.1016\/j.engappai.2022.105776_b38","doi-asserted-by":"crossref","first-page":"1168","DOI":"10.3390\/en10081168","article-title":"Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation","volume":"10","author":"Zheng","year":"2017","journal-title":"Energies"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622007667?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622007667?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T22:22:21Z","timestamp":1714256541000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622007667"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":38,"alternative-id":["S0952197622007667"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105776","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Combined framework based on data preprocessing and multi-objective optimizer for electricity load forecasting","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105776","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105776"}}