{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:26:15Z","timestamp":1726763175988},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.engappai.2022.105723","type":"journal-article","created":{"date-parts":[[2022,12,19]],"date-time":"2022-12-19T06:24:54Z","timestamp":1671431094000},"page":"105723","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Adaptive neuro-fuzzy inference system based data interpolation for particle image velocimetry in fluid flow applications"],"prefix":"10.1016","volume":"119","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7907-6563","authenticated-orcid":false,"given":"Mohammad Amin","family":"Kazemi","sequence":"first","affiliation":[]},{"given":"Mary","family":"Pa","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2860-3124","authenticated-orcid":false,"given":"Mohammad Nasir","family":"Uddin","sequence":"additional","affiliation":[]},{"given":"Mashallah","family":"Rezakazemi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2022.105723_b1","series-title":"Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry","author":"Anon","year":"2020"},{"key":"10.1016\/j.engappai.2022.105723_b2","unstructured":"Bingham,\u00a0C., Riches,\u00a0G., Morton,\u00a0C., Martinuzzi,\u00a0R., 2019. Intelligent Lagrangian Interpolation Algorithm for PIV Data. In: 11th International Symposium on Turbulence and Shear Flow Phenomena. TSFP11, Southampton."},{"key":"10.1016\/j.engappai.2022.105723_b3","doi-asserted-by":"crossref","first-page":"13313","DOI":"10.1007\/s00521-019-04677-w","article-title":"Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM","volume":"32","author":"Cao","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.engappai.2022.105723_b4","doi-asserted-by":"crossref","first-page":"1650","DOI":"10.1007\/s00348-013-1650-z","article-title":"Kriging regression of PIV data using a local error estimate","volume":"55","author":"de Baar","year":"2014","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b5","article-title":"Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework","volume":"31","author":"Deng","year":"2019","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b6","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1007\/s00348-005-0035-3","article-title":"Use of proper orthogonal decomposition for time interpolation from PIV data","volume":"39","author":"Druault","year":"2005","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b7","first-page":"1","article-title":"Adaptive-network-based fuzzy inference (ANFIS) modelling of particle image velocimetry (PIV) measurements in stirred tank reactors","volume":"79","author":"G\u00f3mez\u00a0Camacho","year":"2020","journal-title":"Chem. Eng. Trans."},{"key":"10.1016\/j.engappai.2022.105723_b8","doi-asserted-by":"crossref","first-page":"2763","DOI":"10.1063\/1.1758151","article-title":"Proper orthogonal decomposition reconstruction of a transitional boundary layer with and without control","volume":"16","author":"Gunes","year":"2004","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b9","doi-asserted-by":"crossref","DOI":"10.1063\/1.2740710","article-title":"Spatial resolution enhancement\/smoothing of stereo\u2013particle-image-velocimetry data using proper-orthogonal-decomposition\u2013based and Kriging interpolation methods","volume":"19","author":"Gunes","year":"2007","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b10","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","article-title":"ANFIS: Adaptive-network-based fuzzy inference system","volume":"23","author":"Jang","year":"1993","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.engappai.2022.105723_b11","series-title":"Proceedings of IEEE 5th International Fuzzy Systems","first-page":"493","article-title":"Input selection for ANFIS learning","author":"Jang","year":"1996"},{"key":"10.1016\/j.engappai.2022.105723_b12","series-title":"2006 International Symposium on Evolving Fuzzy Systems","first-page":"8","article-title":"Evolving intelligent systems: Methods, learning, & applications","author":"Kasabov","year":"2006"},{"key":"10.1016\/j.engappai.2022.105723_b13","doi-asserted-by":"crossref","first-page":"4578","DOI":"10.1021\/acs.langmuir.7b00616","article-title":"Experimental and numerical study of the evaporation of water at low pressures","volume":"33","author":"Kazemi","year":"2017","journal-title":"Langmuir"},{"key":"10.1016\/j.engappai.2022.105723_b14","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevFluids.3.124001","article-title":"Investigation of the phenomena occurring near the liquid\u2013vapor interface during evaporation of water at low pressures","volume":"3","author":"Kazemi","year":"2018","journal-title":"Phys. Rev. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b15","doi-asserted-by":"crossref","first-page":"11155","DOI":"10.1038\/s41598-021-90734-1","article-title":"Sound pressure level spectrum analysis by combination of 4D PTV and ANFIS method around automotive side-view mirror models","volume":"11","author":"Kim","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.engappai.2022.105723_b16","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1038\/s42256-021-00369-0","article-title":"Deep recurrent optical flow learning for particle image velocimetry data","volume":"3","author":"Lagemann","year":"2021","journal-title":"Nat. Mach. Intell."},{"issue":"3","key":"10.1016\/j.engappai.2022.105723_b17","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1038\/s42256-021-00369-0","article-title":"Deep recurrent optical flow learning for particle image velocimetry data","volume":"7","author":"Lagemann","year":"2021","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.engappai.2022.105723_b18","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1007\/s00348-002-0530-8","article-title":"Cellular neural network to detect spurious vectors in PIV data","volume":"34","author":"Liang","year":"2003","journal-title":"Exp. Fluids"},{"issue":"34","key":"10.1016\/j.engappai.2022.105723_b19","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1007\/s00348-002-0530-8","article-title":"Cellular neural network to detect spurious vectors in PIV data","volume":"1","author":"Liang","year":"2003","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b20","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1007\/s00348-018-2648-3","article-title":"On the calculation of force from PIV data using the generalized added-mass and circulatory force decomposition","volume":"60","author":"Limacher","year":"2019","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b21","article-title":"Deep learning methods for super-resolution reconstruction of turbulent flows","volume":"32","author":"Liu","year":"2020","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b22","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1109\/72.846746","article-title":"Neuro-fuzzy rule generation: Survey in soft computing framework","volume":"11","author":"Mitra","year":"2000","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.engappai.2022.105723_b23","doi-asserted-by":"crossref","DOI":"10.1063\/5.0060760","article-title":"Experimental velocity data estimation for imperfect particle images using machine learning","volume":"33","author":"Morimoto","year":"2021","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b24","doi-asserted-by":"crossref","first-page":"7487","DOI":"10.1007\/s13369-020-04611-6","article-title":"Fluid velocity prediction inside bubble column reactor using ANFIS algorithm based on CFD input data","volume":"45","author":"Nguyen","year":"2020","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.engappai.2022.105723_b25","first-page":"21","article-title":"Interpolation of hydrodynamic velocity data with the continuity equation","volume":"7","author":"N\u00fa\u00f1ez","year":"2007","journal-title":"J. Comput. Methods Sci. Eng."},{"key":"10.1016\/j.engappai.2022.105723_b26","doi-asserted-by":"crossref","first-page":"A2","DOI":"10.1017\/jfm.2022.135","article-title":"Accurate prediction of the particle image velocimetry flow field and rotor thrust using deep learning","volume":"939","author":"Oh","year":"2022","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.engappai.2022.105723_b27","doi-asserted-by":"crossref","DOI":"10.1177\/1847979018768421","article-title":"A comparative study of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models in distribution system with nondeterministic inputs","volume":"10","author":"Okwu","year":"2018","journal-title":"Int. J. Eng. Bus. Manag."},{"key":"10.1016\/j.engappai.2022.105723_b28","doi-asserted-by":"crossref","DOI":"10.1088\/0957-0233\/23\/2\/025303","article-title":"Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction","volume":"23","author":"Raben","year":"2012","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2022.105723_b29","series-title":"Particle Image Velocimetry","author":"Raffel","year":"2018"},{"issue":"11","key":"10.1016\/j.engappai.2022.105723_b30","first-page":"1","article-title":"Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data","volume":"1","author":"Rutkowski","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.engappai.2022.105723_b31","doi-asserted-by":"crossref","first-page":"71","DOI":"10.3390\/opt1010006","article-title":"Micro- and macro-scale measurement of flow velocity in porous media: A shadow imaging approach for 2D and 3D","volume":"1","author":"Sabbagh","year":"2020","journal-title":"Optics"},{"key":"10.1016\/j.engappai.2022.105723_b32","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1007\/s00348-016-2208-7","article-title":"Development and evaluation of gappy-POD as a data reconstruction technique for noisy PIV measurements in gas turbine combustors","volume":"57","author":"Saini","year":"2016","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b33","doi-asserted-by":"crossref","first-page":"10, 703","DOI":"10.1002\/2016GL070340","article-title":"Interpolation of 2-D vector data using constraints from elasticity","volume":"43","author":"Sandwell","year":"2016","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.engappai.2022.105723_b34","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1007\/s00348-012-1366-5","article-title":"Navier\u2013Stokes simulations in gappy PIV data","volume":"53","author":"Sciacchitano","year":"2012","journal-title":"Exp. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b35","doi-asserted-by":"crossref","DOI":"10.1063\/1.5094943","article-title":"Fast flow field prediction over airfoils using deep learning approach","volume":"31","author":"Sekar","year":"2019","journal-title":"Phys. Fluids"},{"key":"10.1016\/j.engappai.2022.105723_b36","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1017\/S0022112004001338","article-title":"Gappy data and reconstruction procedures for flow past a cylinder","volume":"519","author":"Venturi","year":"2004","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.engappai.2022.105723_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijheatfluidflow.2020.108733","article-title":"Lagrangian interpolation algorithm for PIV data","volume":"86","author":"Vocke","year":"2020","journal-title":"Int. J. Heat Fluid Flow"},{"key":"10.1016\/j.engappai.2022.105723_b38","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1088\/0957-0233\/8\/12\/002","article-title":"Fundamentals of digital particle image velocimetry","volume":"8","author":"Westerweel","year":"1997","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.engappai.2022.105723_b39","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1186\/1687-1499-2014-15","article-title":"Comparative evaluation of ARIMA and ANFIS for modeling of wireless network traffic time series","volume":"2014","author":"Yadav","year":"2014","journal-title":"EURASIP J. Wireless Commun. Networking"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622007138?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622007138?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,4]],"date-time":"2023-02-04T22:33:31Z","timestamp":1675550011000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622007138"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":39,"alternative-id":["S0952197622007138"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105723","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive neuro-fuzzy inference system based data interpolation for particle image velocimetry in fluid flow applications","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105723","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105723"}}