{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:23:05Z","timestamp":1740118985931,"version":"3.37.3"},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","award":["LL1902"],"id":[{"id":"10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001823","name":"Ministerstvo \u0160kolstv\u00ed, Ml\u00e1de\u017ee a T\u011blov\u00fdchovy","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001823","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.engappai.2022.105676","type":"journal-article","created":{"date-parts":[[2022,12,6]],"date-time":"2022-12-06T11:33:08Z","timestamp":1670326388000},"page":"105676","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning"],"prefix":"10.1016","volume":"118","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0623-4890","authenticated-orcid":false,"given":"Mohammad","family":"Rohaninejad","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3487-784X","authenticated-orcid":false,"given":"Mikol\u00e1\u0161","family":"Janota","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8135-1296","authenticated-orcid":false,"given":"Zden\u011bk","family":"Hanz\u00e1lek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.engappai.2022.105676_b1","doi-asserted-by":"crossref","first-page":"2926","DOI":"10.1016\/j.cor.2009.01.007","article-title":"The multi-item capacitated lot-sizing problem with safety stocks and demand shortage costs","volume":"36","author":"Absi","year":"2009","journal-title":"Comput. Oper. Res."},{"issue":"1","key":"10.1016\/j.engappai.2022.105676_b2","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.ejor.2021.12.027","article-title":"Dynamic lot sizing with stochastic demand timing","volume":"302","author":"Akartunal\u0131","year":"2022","journal-title":"European J. Oper. Res."},{"key":"10.1016\/j.engappai.2022.105676_b3","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.cor.2017.09.005","article-title":"A computational study of the general lot-sizing and scheduling model under demand uncertainty via robust and stochastic approaches","volume":"90","author":"Alem","year":"2018","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.engappai.2022.105676_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107176","article-title":"Approaches for the joint resolution of lot-sizing and scheduling with infeasibilities occurrences","volume":"155","author":"Alves","year":"2021","journal-title":"Comput. Ind. Eng."},{"year":"2006","series-title":"k-Means++: The Advantages of Careful Seeding","author":"Arthur","key":"10.1016\/j.engappai.2022.105676_b5"},{"key":"10.1016\/j.engappai.2022.105676_b6","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.jmsy.2017.12.005","article-title":"Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system","volume":"46","author":"Baykaso\u011flu","year":"2018","journal-title":"J. Manuf. Syst."},{"issue":"1","key":"10.1016\/j.engappai.2022.105676_b7","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.ijpe.2005.05.018","article-title":"Scenario-based planning for lot-sizing and scheduling with uncertain processing times","volume":"101","author":"Beraldi","year":"2006","journal-title":"Int. J. Prod. Econ."},{"issue":"10","key":"10.1016\/j.engappai.2022.105676_b8","doi-asserted-by":"crossref","first-page":"1174","DOI":"10.1287\/mnsc.28.10.1174","article-title":"Computational complexity of the capacitated lot size problem","volume":"28","author":"Bitran","year":"1982","journal-title":"Manage. Sci."},{"issue":"1","key":"10.1016\/j.engappai.2022.105676_b9","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.ijpe.2011.02.008","article-title":"A new method for robustness in rolling horizon planning","volume":"143","author":"Bredstr\u00f6m","year":"2013","journal-title":"Int. J. Prod. Econ."},{"key":"10.1016\/j.engappai.2022.105676_b10","first-page":"1","article-title":"Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0","author":"Cadavid","year":"2020","journal-title":"J. Intell. Manuf."},{"issue":"10","key":"10.1016\/j.engappai.2022.105676_b11","doi-asserted-by":"crossref","first-page":"2287","DOI":"10.1080\/00207540050028106","article-title":"Rolling-horizon lot-sizing when set-up times are sequence-dependent","volume":"38","author":"Clark","year":"2000","journal-title":"Int. J. Prod. Res."},{"issue":"3","key":"10.1016\/j.engappai.2022.105676_b12","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.asoc.2012.02.026","article-title":"Heuristic-based neural networks for stochastic dynamic lot sizing problem","volume":"13","author":"\u015eenyi\u011fit","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2022.105676_b13","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.ijpe.2018.04.012","article-title":"Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty","volume":"202","author":"Curcio","year":"2018","journal-title":"Int. J. Prod. Econ."},{"key":"10.1016\/j.engappai.2022.105676_b14","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.eswa.2017.06.010","article-title":"A machine learning-based system for berth scheduling at bulk terminals","volume":"87","author":"de Le\u00f3n","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2022.105676_b15","series-title":"Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management","first-page":"181","article-title":"Supply chain management under uncertainties: lot-sizing and scheduling rules","author":"Dolgui","year":"2010"},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b16","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/S0377-2217(97)00030-1","article-title":"Lot sizing and scheduling\u2014survey and extensions","volume":"99","author":"Drexl","year":"1997","journal-title":"European J. Oper. Res."},{"issue":"3","key":"10.1016\/j.engappai.2022.105676_b17","doi-asserted-by":"crossref","first-page":"6697","DOI":"10.1016\/j.eswa.2008.08.058","article-title":"A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis","volume":"36","author":"Efendigil","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"20","key":"10.1016\/j.engappai.2022.105676_b18","doi-asserted-by":"crossref","first-page":"6192","DOI":"10.1080\/00207543.2016.1162917","article-title":"Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment","volume":"54","author":"Englberger","year":"2016","journal-title":"Int. J. Prod. Res."},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b19","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/S0305-0483(99)00035-3","article-title":"A neural network model for solving the lot-sizing problem","volume":"28","author":"Gaafar","year":"2000","journal-title":"Omega"},{"key":"10.1016\/j.engappai.2022.105676_b20","first-page":"1","article-title":"Price of robustness optimization through demand forecasting with an application to waste management","author":"Gentile","year":"2022","journal-title":"Soft Comput."},{"key":"10.1016\/j.engappai.2022.105676_b21","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1016\/j.jclepro.2017.01.166","article-title":"Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing\/remanufacturing systems","volume":"148","author":"Giglio","year":"2017","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.engappai.2022.105676_b22","article-title":"A rolling-horizon approach for multi-period optimization","author":"Glomb","year":"2021","journal-title":"European J. Oper. Res."},{"issue":"17","key":"10.1016\/j.engappai.2022.105676_b23","doi-asserted-by":"crossref","first-page":"5236","DOI":"10.1080\/00207543.2014.902156","article-title":"Solving the integrated lot-sizing and job-shop scheduling problem","volume":"52","author":"Gomez\u00a0Urrutia","year":"2014","journal-title":"Int. J. Prod. Res."},{"issue":"7","key":"10.1016\/j.engappai.2022.105676_b24","doi-asserted-by":"crossref","first-page":"1857","DOI":"10.1007\/s00521-019-04571-5","article-title":"Application research of improved genetic algorithm based on machine learning in production scheduling","volume":"32","author":"Guo","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.engappai.2022.105676_b25","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.cherd.2016.10.035","article-title":"From rescheduling to online scheduling","volume":"116","author":"Gupta","year":"2016","journal-title":"Chem. Eng. Res. Des."},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b26","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/S0925-5273(99)00119-X","article-title":"Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities","volume":"66","author":"Haase","year":"2000","journal-title":"Int. J. Prod. Econ."},{"issue":"9","key":"10.1016\/j.engappai.2022.105676_b27","doi-asserted-by":"crossref","first-page":"4123","DOI":"10.1287\/mnsc.2018.3145","article-title":"Data-driven patient scheduling in emergency departments: A hybrid robust-stochastic approach","volume":"65","author":"He","year":"2019","journal-title":"Manage. Sci."},{"issue":"1","key":"10.1016\/j.engappai.2022.105676_b28","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1007\/s00291-012-0283-6","article-title":"Dynamic capacitated lot sizing with random demand and dynamic safety stocks","volume":"35","author":"Helber","year":"2013","journal-title":"OR Spectrum"},{"key":"10.1016\/j.engappai.2022.105676_b29","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.ijpe.2016.07.027","article-title":"A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty","volume":"180","author":"Hu","year":"2016","journal-title":"Int. J. Prod. Econ."},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b30","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1016\/j.ejor.2019.12.030","article-title":"Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties","volume":"284","author":"Hu","year":"2020","journal-title":"European J. Oper. Res."},{"issue":"3","key":"10.1016\/j.engappai.2022.105676_b31","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s10845-015-1033-9","article-title":"A new model for single machine scheduling with uncertain processing time","volume":"28","author":"Hu","year":"2017","journal-title":"J. Intell. Manuf."},{"issue":"1","key":"10.1016\/j.engappai.2022.105676_b32","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1007\/s10107-015-0929-7","article-title":"Data-driven chance constrained stochastic program","volume":"158","author":"Jiang","year":"2016","journal-title":"Math. Program."},{"key":"10.1016\/j.engappai.2022.105676_b33","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1016\/j.cie.2018.02.003","article-title":"Multi-level job scheduling under processing time uncertainty","volume":"120","author":"Joo","year":"2018","journal-title":"Comput. Ind. Eng."},{"issue":"10","key":"10.1016\/j.engappai.2022.105676_b34","doi-asserted-by":"crossref","first-page":"3290","DOI":"10.1080\/00207543.2019.1581954","article-title":"Learning dispatching rules using random forest in flexible job shop scheduling problems","volume":"57","author":"Jun","year":"2019","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.engappai.2022.105676_b35","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.asoc.2014.10.015","article-title":"A self-adaptive PSO for joint lot sizing and job shop scheduling with compressible process times","volume":"27","author":"Karimi-Nasab","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2022.105676_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijpe.2020.107837","article-title":"Forecasting of customer demands for production planning by local k-nearest neighbor models","volume":"231","author":"K\u00fcck","year":"2021","journal-title":"Int. J. Prod. Econ."},{"key":"10.1016\/j.engappai.2022.105676_b37","first-page":"1","article-title":"Clustering-based solution approach for a capacitated lot-sizing problem on parallel machines with sequence-dependent setups","author":"Larroche","year":"2021","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.engappai.2022.105676_b38","series-title":"2020 1st International Conference on Big Data Analytics and Practices","first-page":"1","article-title":"Demand forecasting using artificial neural network based on quantitative and qualitative data","author":"Leenatham","year":"2020"},{"issue":"9","key":"10.1016\/j.engappai.2022.105676_b39","doi-asserted-by":"crossref","first-page":"2445","DOI":"10.1007\/s00170-020-05850-5","article-title":"Machine learning and optimization for production rescheduling in industry 4.0","volume":"110","author":"Li","year":"2020","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.engappai.2022.105676_b40","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.cie.2017.07.014","article-title":"Shop floor lot-sizing and scheduling with a two-stage stochastic programming model considering uncertain demand and workforce efficiency","volume":"111","author":"Li","year":"2017","journal-title":"Comput. Ind. Eng."},{"issue":"5\u20138","key":"10.1016\/j.engappai.2022.105676_b41","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1007\/s00170-015-7445-z","article-title":"Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs","volume":"82","author":"Macedo","year":"2016","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b42","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/0377-2217(91)90130-N","article-title":"Multilevel capacitated lotsizing complexity and LP-based heuristics","volume":"53","author":"Maes","year":"1991","journal-title":"European J. Oper. Res."},{"issue":"4","key":"10.1016\/j.engappai.2022.105676_b43","doi-asserted-by":"crossref","first-page":"1523","DOI":"10.1016\/j.asoc.2007.11.001","article-title":"Inventory lot-sizing with supplier selection using hybrid intelligent algorithm","volume":"8","author":"Moghadam","year":"2008","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2022.105676_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2020.103244","article-title":"Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems","volume":"120","author":"Morariu","year":"2020","journal-title":"Comput. Ind."},{"issue":"4","key":"10.1016\/j.engappai.2022.105676_b45","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1007\/s10951-008-0090-8","article-title":"A survey of dynamic scheduling in manufacturing systems","volume":"12","author":"Ouelhadj","year":"2009","journal-title":"J. Sched."},{"key":"10.1016\/j.engappai.2022.105676_b46","series-title":"International Conference on Principles and Practice of Constraint Programming","first-page":"405","article-title":"Learning parameters for the sequence constraint from solutions","author":"Picard-Cantin","year":"2016"},{"key":"10.1016\/j.engappai.2022.105676_b47","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.ijpe.2015.03.024","article-title":"Dynamic safety stock in co-production demand-driven wood remanufacturing mills: A case study","volume":"165","author":"Rafiei","year":"2015","journal-title":"Int. J. Prod. Econ."},{"issue":"7","key":"10.1016\/j.engappai.2022.105676_b48","doi-asserted-by":"crossref","first-page":"5134","DOI":"10.1016\/j.apm.2012.10.024","article-title":"Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system","volume":"37","author":"Ramezanian","year":"2013","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.engappai.2022.105676_b49","first-page":"1","article-title":"A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines","author":"Rohaninejad","year":"2021","journal-title":"Int. J. Prod. Res."},{"issue":"12","key":"10.1016\/j.engappai.2022.105676_b50","doi-asserted-by":"crossref","first-page":"3864","DOI":"10.1080\/00207543.2019.1569272","article-title":"Drum buffer rope-based heuristic for multi-level rolling horizon planning in mixed model production","volume":"57","author":"Saif","year":"2019","journal-title":"Int. J. Prod. Res."},{"issue":"8","key":"10.1016\/j.engappai.2022.105676_b51","doi-asserted-by":"crossref","first-page":"1598","DOI":"10.1016\/j.engappai.2012.06.012","article-title":"Multi-product sequencing and lot-sizing under uncertainties: A memetic algorithm","volume":"25","author":"Schemeleva","year":"2012","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2022.105676_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107468","article-title":"Genetic algorithm and Monte Carlo simulation for a stochastic capacitated disassembly lot-sizing problem under random lead times","volume":"159","author":"Slama","year":"2021","journal-title":"Comput. Ind. Eng."},{"issue":"2","key":"10.1016\/j.engappai.2022.105676_b53","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1016\/j.ijpe.2012.02.007","article-title":"Demand forecasting, lot sizing and scheduling on a rolling horizon basis","volume":"140","author":"Tiacci","year":"2012","journal-title":"Int. J. Prod. Econ."},{"issue":"24","key":"10.1016\/j.engappai.2022.105676_b54","doi-asserted-by":"crossref","first-page":"7463","DOI":"10.1080\/00207540903348346","article-title":"Safety stock or safety lead time: coping with unreliability in demand and supply","volume":"48","author":"Van Kampen","year":"2010","journal-title":"Int. J. Prod. Res."},{"issue":"4","key":"10.1016\/j.engappai.2022.105676_b55","doi-asserted-by":"crossref","first-page":"2191","DOI":"10.1111\/itor.12645","article-title":"Multi-level, multi-stage lot-sizing and scheduling in the flexible flow shop with demand information updating","volume":"28","author":"Wan","year":"2021","journal-title":"Int. Trans. Oper. Res."},{"issue":"11","key":"10.1016\/j.engappai.2022.105676_b56","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1016\/j.cep.2007.02.021","article-title":"Hierarchical approach for production planning and scheduling under uncertainty","volume":"46","author":"Wu","year":"2007","journal-title":"Chem. Eng. Process.: Process Intensif."},{"key":"10.1016\/j.engappai.2022.105676_b57","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.compchemeng.2018.04.013","article-title":"Data-driven rolling-horizon robust optimization for petrochemical scheduling using probability density contours","volume":"115","author":"Zhang","year":"2018","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.engappai.2022.105676_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.cor.2021.105289","article-title":"Data-driven branching and selection for lot-sizing and scheduling problems with sequence-dependent setups and setup carryover","volume":"132","author":"Zhang","year":"2021","journal-title":"Comput. Oper. Res."},{"issue":"8","key":"10.1016\/j.engappai.2022.105676_b59","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1080\/095372800110052511","article-title":"Evaluation of safety stock methods in multilevel material requirements planning (MRP) systems","volume":"12","author":"Zhao","year":"2001","journal-title":"Prod. Plan. Control"},{"key":"10.1016\/j.engappai.2022.105676_b60","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101527","article-title":"Lot-sizing decisions for material requirements planning with hybrid uncertainties in a smart factory","volume":"51","author":"Zhu","year":"2022","journal-title":"Adv. Eng. Inform."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622006662?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622006662?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T22:18:27Z","timestamp":1714256307000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622006662"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":60,"alternative-id":["S0952197622006662"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105676","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105676","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105676"}}