{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T19:22:16Z","timestamp":1720466536311},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.engappai.2022.105436","type":"journal-article","created":{"date-parts":[[2022,9,17]],"date-time":"2022-09-17T16:03:55Z","timestamp":1663430635000},"page":"105436","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A global interactive attention-based lightweight denoising network for locating internal defects of CFRP laminates"],"prefix":"10.1016","volume":"116","author":[{"given":"Bo","family":"Yang","sequence":"first","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shilong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Weichun","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Meng","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Yan","family":"He","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5743-246X","authenticated-orcid":false,"given":"Fan","family":"Mo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9\u201310","key":"10.1016\/j.engappai.2022.105436_b1","doi-asserted-by":"crossref","first-page":"4077","DOI":"10.1007\/s00170-020-05315-9","article-title":"Bearing fault diagnostics using EEMD processing and convolutional neural network methods","volume":"107","author":"Amarouayache","year":"2020","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.engappai.2022.105436_b2","doi-asserted-by":"crossref","DOI":"10.1177\/2633366X20924676","article-title":"Epifluorescent microscopy of edge-trimmed carbon fibre-reinforced polymers: An alternative to computed tomography scanning","volume":"29","author":"Ashworth","year":"2020","journal-title":"Adv. Compos. Lett."},{"issue":"4","key":"10.1016\/j.engappai.2022.105436_b3","doi-asserted-by":"crossref","first-page":"971","DOI":"10.1007\/s10845-020-01600-2","article-title":"Bearing fault diagnosis base on multi-scale CNN and LSTM model","volume":"32","author":"Chen","year":"2021","journal-title":"J. Intell. Manuf."},{"key":"10.1016\/j.engappai.2022.105436_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.ndteint.2022.102657","article-title":"Surface defect characterization and depth identification of CFRP material by laser line scanning","volume":"130","author":"Chen","year":"2022","journal-title":"NDT E Int."},{"key":"10.1016\/j.engappai.2022.105436_b5","series-title":"Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems","article-title":"Prediction of damage location in composite plates using artificial neural network modeling","author":"Farhangdoust","year":"2019"},{"key":"10.1016\/j.engappai.2022.105436_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103976","article-title":"An attention long short-term memory based system for automatic classification of speech intelligibility","volume":"96","author":"Fernandez-Diaz","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"1","key":"10.1016\/j.engappai.2022.105436_b7","doi-asserted-by":"crossref","first-page":"224","DOI":"10.3390\/polym12010224","article-title":"Correlation between drop impact energy and residual compressive strength according to the lamination of CFRP with EVA. Sheets","volume":"12","author":"Go","year":"2020","journal-title":"Polymers"},{"key":"10.1016\/j.engappai.2022.105436_b8","doi-asserted-by":"crossref","first-page":"151180","DOI":"10.1109\/ACCESS.2019.2946447","article-title":"Fully convolutional neural network with GRU for 3D braided composite material flaw detection","volume":"7","author":"Guo","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2022.105436_b9","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.compind.2019.01.012","article-title":"An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes","volume":"107","author":"Han","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2022.105436_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2021.114770","article-title":"Terahertz radiation in non-destructive testing of composite pyrotechnic materials","volume":"279","author":"Hlosta","year":"2022","journal-title":"Compos. Struct."},{"issue":"8","key":"10.1016\/j.engappai.2022.105436_b11","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1109\/TPAMI.2019.2913372","article-title":"Squeeze-and-excitation networks","volume":"42","author":"Hu","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2022.105436_b12","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2261","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"issue":"4","key":"10.1016\/j.engappai.2022.105436_b13","doi-asserted-by":"crossref","first-page":"3445","DOI":"10.1109\/TIE.2020.2978690","article-title":"Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines","volume":"68","author":"Lee","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2022.105436_b14","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.jmsy.2022.03.008","article-title":"Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services","volume":"63","author":"Leng","year":"2022","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2022.105436_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.124405","article-title":"A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0","volume":"280","author":"Leng","year":"2021","journal-title":"J. Cleaner Prod."},{"key":"10.1016\/j.engappai.2022.105436_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104279","article-title":"A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery","volume":"102","author":"Li","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2022.105436_b17","series-title":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics","first-page":"300","article-title":"A multiple signals fusing framework for tool condition monitoring based on deep learning","author":"Li","year":"2021"},{"issue":"20","key":"10.1016\/j.engappai.2022.105436_b18","doi-asserted-by":"crossref","first-page":"31739","DOI":"10.1364\/OE.435230","article-title":"Intelligent recognition of composite material damage based on deep learning and infrared testing","volume":"29","author":"Li","year":"2021","journal-title":"Opt. Express"},{"key":"10.1016\/j.engappai.2022.105436_b19","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.sigpro.2019.03.019","article-title":"Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism","volume":"161","author":"Li","year":"2019","journal-title":"Signal Process."},{"key":"10.1016\/j.engappai.2022.105436_b20","doi-asserted-by":"crossref","DOI":"10.1002\/stc.3043","article-title":"Localization and quantification of different types of defects in composite structures with SMART sensor layers","author":"Liu","year":"2022","journal-title":"Struct. Control Health Monit."},{"issue":"12","key":"10.1016\/j.engappai.2022.105436_b21","doi-asserted-by":"crossref","first-page":"6415","DOI":"10.1109\/TII.2019.2912428","article-title":"A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals","volume":"15","author":"Ma","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.engappai.2022.105436_b22","doi-asserted-by":"crossref","first-page":"25189","DOI":"10.1109\/ACCESS.2021.3056944","article-title":"Faultnet: A deep convolutional neural network for bearing fault classification","volume":"9","author":"Magar","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2022.105436_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.compscitech.2021.108839","article-title":"Damage detection of CFRP composites by electromagnetic wave nondestructive testing (EMW-NDT)","volume":"210","author":"Ni","year":"2021","journal-title":"Compos. Sci. Technol."},{"key":"10.1016\/j.engappai.2022.105436_b24","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1007\/s12517-021-08336-0","article-title":"Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks","volume":"14","author":"Ostad-Ali-Askari","year":"2021","journal-title":"Arab. J. Geosci."},{"issue":"1","key":"10.1016\/j.engappai.2022.105436_b25","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1007\/s12205-016-0572-8","article-title":"Artificial neural network for modeling nitrate pollution of groundwater in marginal area of zayandeh-rood river, Isfahan, Iran","volume":"21","author":"Ostad-Ali-Askari","year":"2017","journal-title":"KSCE J. Civ. Eng."},{"issue":"1","key":"10.1016\/j.engappai.2022.105436_b26","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/s10921-020-00737-7","article-title":"X-ray CT-based defect evaluation of continuous CFRP additive manufacturing","volume":"40","author":"Petro","year":"2021","journal-title":"J. Nondestruct. Eval."},{"key":"10.1016\/j.engappai.2022.105436_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.104099","article-title":"Unsupervised damage clustering in complex aeronautical composite structures monitored by lamb waves: An inductive approach","volume":"97","author":"Rahbari","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2022.105436_b28","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.jmsy.2017.02.013","article-title":"Multi-bearing remaining useful life collaborative prediction: A deep learning approach","volume":"43","author":"Ren","year":"2017","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2022.105436_b29","series-title":"2019 Far East NDT New Technology & Application Forum","first-page":"130","article-title":"Deep adversarial network for CFRP thermal imaging debond diagnosis","author":"Ruan","year":"2019"},{"key":"10.1016\/j.engappai.2022.105436_b30","series-title":"Conference on Speckle 2010 - Optical Metrology","article-title":"Depth assessment of defects in composite plates combining shearography and vibration excitation","author":"Schontag","year":"2010"},{"key":"10.1016\/j.engappai.2022.105436_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.ndteint.2021.102478","article-title":"Automated defect detection for ultrasonic inspection of CFRP aircraft components","volume":"122","author":"Seguin-Charbonneau","year":"2021","journal-title":"NDT E Int."},{"issue":"6","key":"10.1016\/j.engappai.2022.105436_b32","doi-asserted-by":"crossref","first-page":"2658","DOI":"10.1109\/TIM.2019.2925247","article-title":"DCNN-based multi-signal induction motor fault diagnosis","volume":"69","author":"Shao","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.engappai.2022.105436_b33","series-title":"International Conference on Learning Representations","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"key":"10.1016\/j.engappai.2022.105436_b34","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.wasman.2020.06.043","article-title":"Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European union","volume":"115","author":"Sommer","year":"2020","journal-title":"Waste Manag."},{"key":"10.1016\/j.engappai.2022.105436_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2020.112448","article-title":"Investigation on the longitudinal compressive strength of unidirectional carbon fiber\/nanoparticles reinforced polymer composites using FFT-based method","volume":"247","author":"Wang","year":"2020","journal-title":"Compos. Struct."},{"key":"10.1016\/j.engappai.2022.105436_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijthermalsci.2019.106196","article-title":"Defect depth retrieval method based on nonlinear transformation for pulsed thermographic inspection","volume":"149","author":"Wang","year":"2020","journal-title":"Int. J. Therm. Sci."},{"key":"10.1016\/j.engappai.2022.105436_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103765","article-title":"An engine-fault-diagnosis system based on sound intensity analysis and wavelet packet pre-processing neural network","volume":"94","author":"Wang","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2022.105436_b38","series-title":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"11531","article-title":"ECA-Net: Efficient channel attention for deep convolutional neural networks","author":"Wang","year":"2020"},{"key":"10.1016\/j.engappai.2022.105436_b39","series-title":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation","first-page":"1106","article-title":"Visual defect recognition and location for pulsed thermography images based on defect-background contrast analysis","author":"Wang","year":"2018"},{"issue":"3","key":"10.1016\/j.engappai.2022.105436_b40","doi-asserted-by":"crossref","DOI":"10.1177\/0036850420950131","article-title":"Pulse-heating infrared thermography inspection of bonding defects on carbon fiber reinforced polymer composites","volume":"103","author":"Wen","year":"2020","journal-title":"Sci. Progress"},{"key":"10.1016\/j.engappai.2022.105436_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2020.112080","article-title":"Non-destructive testing of carbon-fiber-reinforced plastics with a PCB-based T-R probe","volume":"240","author":"Wu","year":"2020","journal-title":"Compos. Struct."},{"key":"10.1016\/j.engappai.2022.105436_b42","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.compind.2018.12.001","article-title":"Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network","volume":"108","author":"Wu","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2022.105436_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2021.103583","article-title":"A feature fusion enhanced multiscale CNN with attention mechanism for spot-welding surface appearance recognition","volume":"135","author":"Xiao","year":"2022","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2022.105436_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compositesb.2021.109285","article-title":"Three-dimensional nondestructive characterization of delamination in GFRP by terahertz time-of-flight tomography with sparse Bayesian learning-based spectrum-graph integration strategy","volume":"225","author":"Xu","year":"2021","journal-title":"Composites B"},{"key":"10.1016\/j.engappai.2022.105436_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2020.112145","article-title":"An improved method of eddy current pulsed thermography to detect subsurface defects in glass fiber reinforced polymer composites","volume":"242","author":"Xu","year":"2020","journal-title":"Compos. Struct."},{"key":"10.1016\/j.engappai.2022.105436_b46","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jmsy.2021.01.007","article-title":"Multi-branch deep neural network model for failure prognostics based on multimodal data","volume":"59","author":"Yang","year":"2021","journal-title":"J. Manuf. Syst."},{"issue":"15","key":"10.1016\/j.engappai.2022.105436_b47","doi-asserted-by":"crossref","first-page":"4300","DOI":"10.3390\/s20154300","article-title":"Deep learning model for fault diagnosis with a deep neural network and feature fusion on multi-channel sensory signals","volume":"20","author":"Ye","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2022.105436_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.107984","article-title":"Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis","volume":"161","author":"Ye","year":"2021","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2022.105436_b49","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.chemolab.2017.02.007","article-title":"Tensor-based ultrasonic data analysis for defect detection in fiber reinforced polymer (FRP) composites","volume":"163","author":"You","year":"2017","journal-title":"Chemometr. Intell. Lab. Syst."},{"key":"10.1016\/j.engappai.2022.105436_b50","series-title":"14th Quantitative Infrared Thermography Conference","first-page":"97","article-title":"Application of deep learning in infrared non-destructive testing","author":"Yousefi","year":"2018"},{"key":"10.1016\/j.engappai.2022.105436_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109310","article-title":"Multiscale attentional residual neural network framework for remaining useful life prediction of bearings","volume":"177","author":"Yu","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2022.105436_b52","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/8959185","article-title":"A deep domain-adversarial transfer fault diagnosis method for rolling bearing based on ensemble empirical mode decomposition","volume":"2022","author":"Yu","year":"2022","journal-title":"J. Sens."},{"issue":"2","key":"10.1016\/j.engappai.2022.105436_b53","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.cja.2019.07.011","article-title":"A new bearing fault diagnosis method based on modified convolutional neural networks","volume":"33","author":"Zhang","year":"2020","journal-title":"Chin. J. Aeronaut."},{"key":"10.1016\/j.engappai.2022.105436_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109491","article-title":"A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox","volume":"179","author":"Zhang","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2022.105436_b55","series-title":"15th European Conference on Computer Vision (ECCV), Vol. 11213","first-page":"270","article-title":"PSANet: Point-wise spatial attention network for scene parsing","author":"Zhao","year":"2018"},{"issue":"7","key":"10.1016\/j.engappai.2022.105436_b56","doi-asserted-by":"crossref","first-page":"4681","DOI":"10.1109\/TII.2019.2943898","article-title":"Deep residual shrinkage networks for fault diagnosis","volume":"16","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Ind. Inf."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622004262?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622004262?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T22:07:18Z","timestamp":1714255638000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622004262"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":56,"alternative-id":["S0952197622004262"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105436","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A global interactive attention-based lightweight denoising network for locating internal defects of CFRP laminates","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105436","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105436"}}