{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T04:30:54Z","timestamp":1725510654498},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012639","name":"Prince Sultan University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012639","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.engappai.2022.105095","type":"journal-article","created":{"date-parts":[[2022,7,7]],"date-time":"2022-07-07T01:57:34Z","timestamp":1657159054000},"page":"105095","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems"],"prefix":"10.1016","volume":"114","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3057-4924","authenticated-orcid":false,"given":"Bilel","family":"Benjdira","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3787-7423","authenticated-orcid":false,"given":"Anis","family":"Koubaa","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7869-6373","authenticated-orcid":false,"given":"Ahmad Taher","family":"Azar","sequence":"additional","affiliation":[]},{"given":"Zahid","family":"Khan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0795-132X","authenticated-orcid":false,"given":"Adel","family":"Ammar","sequence":"additional","affiliation":[]},{"given":"Wadii","family":"Boulila","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2022.105095_b1","series-title":"Perceiving traffic from aerial images","author":"Adaimi","year":"2020"},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b2","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1109\/TAES.2013.120404","article-title":"Tracking vehicles through shadows and occlusions in wide-area aerial video","volume":"50","author":"Aeschliman","year":"2014","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"21","key":"10.1016\/j.engappai.2022.105095_b3","doi-asserted-by":"crossref","first-page":"4656","DOI":"10.3390\/app9214656","article-title":"Helping the visually impaired see via image multi-labeling based on SqueezeNet CNN","volume":"9","author":"Alhichri","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.engappai.2022.105095_b4","series-title":"International Conference on Image Analysis and Recognition","first-page":"290","article-title":"Multiple object scene description for the visually impaired using pre-trained convolutional neural networks","author":"Alhichri","year":"2016"},{"issue":"11","key":"10.1016\/j.engappai.2022.105095_b5","doi-asserted-by":"crossref","first-page":"2221","DOI":"10.3390\/rs13112221","article-title":"An efficient approach based on privacy-preserving deep learning for satellite image classification","volume":"13","author":"Alkhelaiwi","year":"2021","journal-title":"Remote Sens."},{"issue":"2","key":"10.1016\/j.engappai.2022.105095_b6","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/TITS.2003.821208","article-title":"Methods of analyzing traffic imagery collected from aerial platforms","volume":"4","author":"Angel","year":"2003","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b7","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1002\/ima.22654","article-title":"Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images","volume":"32","author":"Ben\u00a0Atitallah","year":"2022","journal-title":"Int. J. Imaging Syst. Technol."},{"issue":"6","key":"10.1016\/j.engappai.2022.105095_b8","doi-asserted-by":"crossref","first-page":"2884","DOI":"10.3390\/app11062884","article-title":"COVID-19 diagnosis in chest X-rays using deep learning and majority voting","volume":"11","author":"Ben\u00a0Jabra","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.engappai.2022.105095_b9","doi-asserted-by":"crossref","first-page":"1092","DOI":"10.3390\/app10031092","article-title":"Data-efficient domain adaptation for semantic segmentation of aerial imagery using generative adversarial networks","volume":"10","author":"Benjdira","year":"2020","journal-title":"Appl. Sci."},{"issue":"11","key":"10.1016\/j.engappai.2022.105095_b10","doi-asserted-by":"crossref","DOI":"10.3390\/rs11111369","article-title":"Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images","volume":"11","author":"Benjdira","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2022.105095_b11","series-title":"Parking analytics framework using deep learning","author":"Benjdira","year":"2022"},{"issue":"4","key":"10.1016\/j.engappai.2022.105095_b12","doi-asserted-by":"crossref","first-page":"1370","DOI":"10.3390\/app10041370","article-title":"Spinal cord segmentation in ultrasound medical imagery","volume":"10","author":"Benjdira","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.engappai.2022.105095_b13","doi-asserted-by":"crossref","DOI":"10.1109\/ICIP.2016.7533003","article-title":"Simple online and realtime tracking","author":"Bewley","year":"2016","journal-title":"2016 IEEE International Conference on Image Processing (ICIP)"},{"key":"10.1016\/j.engappai.2022.105095_b14","series-title":"YOLOv4: Optimal speed and accuracy of object detection","author":"Bochkovskiy","year":"2020"},{"key":"10.1016\/j.engappai.2022.105095_b15","series-title":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","first-page":"1478","article-title":"A deep learning-based approach for real-time facemask detection","author":"Boulila","year":"2021"},{"issue":"3","key":"10.1016\/j.engappai.2022.105095_b16","first-page":"62","article-title":"Drones for traffic flow analysis of urban roundabouts","volume":"9","author":"Brahimi","year":"2020","journal-title":"Int. J. Traffic Transp. Eng. (Rosemead, Calif.)"},{"key":"10.1016\/j.engappai.2022.105095_b17","series-title":"Proc. 24th International Conference on Unmanned Air Vehicle Systems","first-page":"1","article-title":"Autonomous real-time vehicle detection from a medium-level UAV","author":"Breckon","year":"2009"},{"key":"10.1016\/j.engappai.2022.105095_b18","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.neucom.2013.07.014","article-title":"Ego motion guided particle filter for vehicle tracking in airborne videos","volume":"124","author":"Cao","year":"2014","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.engappai.2022.105095_b19","doi-asserted-by":"crossref","first-page":"921","DOI":"10.1007\/s00138-011-0336-x","article-title":"Vehicle detection and tracking in airborne videos by multi-motion layer analysis","volume":"23","author":"Cao","year":"2012","journal-title":"Mach. Vis. Appl."},{"issue":"10","key":"10.1016\/j.engappai.2022.105095_b20","doi-asserted-by":"crossref","first-page":"1522","DOI":"10.1109\/TCSVT.2011.2162274","article-title":"Vehicle detection and motion analysis in low-altitude airborne video under urban environment","volume":"21","author":"Cao","year":"2011","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"4","key":"10.1016\/j.engappai.2022.105095_b21","doi-asserted-by":"crossref","first-page":"2152","DOI":"10.1109\/TIP.2011.2172798","article-title":"Vehicle detection in aerial surveillance using dynamic Bayesian networks","volume":"21","author":"Cheng","year":"2011","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.engappai.2022.105095_b22","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.neucom.2019.11.023","article-title":"Deep learning in video multi-object tracking: A survey","volume":"381","author":"Ciaparrone","year":"2020","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/ncomms10793","article-title":"Understanding congested travel in urban areas","volume":"7","author":"\u00c7olak","year":"2016","journal-title":"Nature Commun."},{"key":"10.1016\/j.engappai.2022.105095_b24","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/MCG.2010.64","article-title":"Spatial navigation for context-aware video surveillance","volume":"30","author":"de Haan","year":"2010","journal-title":"IEEE Comput. Graph. Appl."},{"key":"10.1016\/j.engappai.2022.105095_b25","doi-asserted-by":"crossref","first-page":"8324301","DOI":"10.1155\/2017\/8324301","article-title":"An open data platform for traffic parameters measurement via multirotor unmanned aerial vehicles video","volume":"2017","author":"Du","year":"2017","journal-title":"J. Adv. Transp."},{"key":"10.1016\/j.engappai.2022.105095_b26","series-title":"Intelligent Robots and Computer Vision XXVIII: Algorithms and Techniques","article-title":"Real-time people and vehicle detection from UAV imagery","volume":"7878","author":"Gaszczak","year":"2011"},{"key":"10.1016\/j.engappai.2022.105095_b27","series-title":"International Symposium: New Metropolitan Perspectives","first-page":"1541","article-title":"Traffic flows surveying and monitoring by drone-video","author":"Gattuso","year":"2020"},{"issue":"3","key":"10.1016\/j.engappai.2022.105095_b28","doi-asserted-by":"crossref","first-page":"613","DOI":"10.3390\/rs14030613","article-title":"Semantic segmentation and edge detection\u2014Approach to road detection in very high resolution satellite images","volume":"14","author":"Ghandorh","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2022.105095_b29","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"issue":"3","key":"10.1016\/j.engappai.2022.105095_b30","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ijtst.2016.12.001","article-title":"Evaluating the accuracy of vehicle tracking data obtained from unmanned aerial vehicles","volume":"5","author":"Guido","year":"2016","journal-title":"Int. J. Transp. Sci. Technol."},{"key":"10.1016\/j.engappai.2022.105095_b31","first-page":"1","article-title":"A survey on instance segmentation: state of the art","author":"Hafiz","year":"2020","journal-title":"Int. J. Multimedia Inf. Retr."},{"key":"10.1016\/j.engappai.2022.105095_b32","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neucom.2019.11.118","article-title":"A brief survey on semantic segmentation with deep learning","volume":"406","author":"Hao","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2022.105095_b33","series-title":"Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005","first-page":"2937","article-title":"Context-supported vehicle detection in optical satellite images of urban areas","volume":"vol. 4","author":"Hinz","year":"2005"},{"key":"10.1016\/j.engappai.2022.105095_b34","series-title":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","first-page":"1878","article-title":"A vision algorithm for dynamic detection of moving vehicles with a UAV","author":"Kaaniche","year":"2005"},{"issue":"7","key":"10.1016\/j.engappai.2022.105095_b35","doi-asserted-by":"crossref","first-page":"724","DOI":"10.1049\/iet-its.2019.0463","article-title":"Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video","volume":"14","author":"Ke","year":"2020","journal-title":"IET Intell. Transp. Syst."},{"key":"10.1016\/j.engappai.2022.105095_b36","series-title":"2015 IEEE First International Smart Cities Conference (ISC2)","first-page":"1","article-title":"Motion-vector clustering for traffic speed detection from UAV video","author":"Ke","year":"2015"},{"issue":"4","key":"10.1016\/j.engappai.2022.105095_b37","doi-asserted-by":"crossref","first-page":"890","DOI":"10.1109\/TITS.2016.2595526","article-title":"Real-time bidirectional traffic flow parameter estimation from aerial videos","volume":"18","author":"Ke","year":"2016","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b38","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1109\/TITS.2018.2797697","article-title":"Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow","volume":"20","author":"Ke","year":"2018","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.engappai.2022.105095_b39","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1016\/j.trpro.2017.03.043","article-title":"UAV-based traffic analysis: A universal guiding framework based on literature survey","volume":"22","author":"Khan","year":"2017","journal-title":"Transp. Res. Procedia"},{"key":"10.1016\/j.engappai.2022.105095_b40","series-title":"2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV\/MOTION\u201905)-Vol. 1","first-page":"455","article-title":"Realtime road detection by learning from one example","volume":"1","author":"Kim","year":"2005"},{"issue":"18","key":"10.1016\/j.engappai.2022.105095_b41","doi-asserted-by":"crossref","first-page":"5240","DOI":"10.3390\/s20185240","article-title":"Deepbrain: Experimental evaluation of cloud-based computation offloading and edge computing in the internet-of-drones for deep learning applications","volume":"20","author":"Koub\u00e2a","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2022.105095_b42","series-title":"2020 6th Conference on Data Science and Machine Learning Applications (CDMA)","first-page":"106","article-title":"Activity monitoring of islamic prayer (salat) postures using deep learning","author":"Koub\u00e2a","year":"2020"},{"key":"10.1016\/j.engappai.2022.105095_b43","series-title":"Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada, United States","first-page":"1106","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.engappai.2022.105095_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102946","article-title":"Domain adaptation from daytime to nighttime: A situation-sensitive vehicle detection and traffic flow parameter estimation framework","volume":"124","author":"Li","year":"2021","journal-title":"Transp. Res. C"},{"key":"10.1016\/j.engappai.2022.105095_b45","series-title":"2012 IEEE International Conference on Robotics and Automation","first-page":"3588","article-title":"Road detection from aerial imagery","author":"Lin","year":"2012"},{"issue":"2","key":"10.1016\/j.engappai.2022.105095_b46","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s11263-019-01247-4","article-title":"Deep learning for generic object detection: A survey","volume":"128","author":"Liu","year":"2020","journal-title":"Int. J. Comput. Vis."},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b47","doi-asserted-by":"crossref","first-page":"136","DOI":"10.3141\/1855-17","article-title":"Estimating annual average daily traffic from satellite imagery and air photos: Empirical results","volume":"1855","author":"McCord","year":"2003","journal-title":"Transp. Res. Rec."},{"key":"10.1016\/j.engappai.2022.105095_b48","series-title":"2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH)","first-page":"214","article-title":"DriftNet: Aggressive driving behaviour detection using 3D convolutional neural networks","author":"Noor","year":"2020"},{"key":"10.1016\/j.engappai.2022.105095_b49","first-page":"116","article-title":"Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges","volume":"141","author":"Outay","year":"2020","journal-title":"Transp. Res. A"},{"key":"10.1016\/j.engappai.2022.105095_b50","doi-asserted-by":"crossref","unstructured":"Pless, R., Jurgens, D., 2004. Road extraction from motion cues in aerial video. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems. pp. 31\u201338.","DOI":"10.1145\/1032222.1032229"},{"key":"10.1016\/j.engappai.2022.105095_b51","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016","first-page":"779","article-title":"You only look once: Unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.engappai.2022.105095_b52","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017","first-page":"6517","article-title":"YOLO9000: better, faster, stronger","author":"Redmon","year":"2017"},{"key":"10.1016\/j.engappai.2022.105095_b53","series-title":"YOLOv3: An incremental improvement","author":"Redmon","year":"2018"},{"issue":"4","key":"10.1016\/j.engappai.2022.105095_b54","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1109\/TITS.2005.858621","article-title":"Airborne video registration and traffic-flow parameter estimation","volume":"6","author":"Shastry","year":"2005","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"3\u20134","key":"10.1016\/j.engappai.2022.105095_b55","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.isprsjprs.2006.09.010","article-title":"Extracting dynamic spatial data from airborne imaging sensors to support traffic flow estimation","volume":"61","author":"Toth","year":"2006","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.engappai.2022.105095_b56","series-title":"World urbanization prospects","author":"United","year":"2018"},{"key":"10.1016\/j.engappai.2022.105095_b57","series-title":"2017 IEEE International Conference on Image Processing (ICIP)","first-page":"3645","article-title":"Simple online and realtime tracking with a deep association metric","author":"Wojke","year":"2017"},{"key":"10.1016\/j.engappai.2022.105095_b58","series-title":"2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u201905), Vol. 2","first-page":"1202","article-title":"A flow-based approach to vehicle detection and background mosaicking in airborne video","author":"Yalcin","year":"2005"},{"key":"10.1016\/j.engappai.2022.105095_b59","series-title":"IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Vol. 3","first-page":"III","article-title":"Vehicle extraction and speed detection from digital aerial images","author":"Yamazaki","year":"2008"},{"key":"10.1016\/j.engappai.2022.105095_b60","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2671","article-title":"Motion pattern interpretation and detection for tracking moving vehicles in airborne video","author":"Yu","year":"2009"},{"issue":"3","key":"10.1016\/j.engappai.2022.105095_b61","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)CP.1943-5487.0000646","article-title":"Automated traffic surveillance system with aerial camera arrays imagery: Macroscopic data collection with vehicle tracking","volume":"31","author":"Zhao","year":"2017","journal-title":"J. Comput. Civ. Eng."},{"issue":"8","key":"10.1016\/j.engappai.2022.105095_b62","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1016\/S0262-8856(03)00064-7","article-title":"Car detection in low resolution aerial images","volume":"21","author":"Zhao","year":"2003","journal-title":"Image Vis. Comput."},{"issue":"1","key":"10.1016\/j.engappai.2022.105095_b63","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1109\/TITS.2014.2331353","article-title":"Efficient road detection and tracking for unmanned aerial vehicle","volume":"16","author":"Zhou","year":"2014","journal-title":"IEEE Trans. Intell. Transp. Syst."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622002408?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622002408?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:49:39Z","timestamp":1714254579000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622002408"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":63,"alternative-id":["S0952197622002408"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105095","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.105095","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105095"}}