{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T15:05:37Z","timestamp":1725807937437},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.engappai.2022.104822","type":"journal-article","created":{"date-parts":[[2022,3,21]],"date-time":"2022-03-21T18:15:42Z","timestamp":1647886542000},"page":"104822","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"C","title":["Diagnosing Alzheimer\u2019s disease from on-line handwriting: A novel dataset and performance benchmarking"],"prefix":"10.1016","volume":"111","author":[{"given":"Nicole D.","family":"Cilia","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8195-4118","authenticated-orcid":false,"given":"Giuseppe","family":"De Gregorio","sequence":"additional","affiliation":[]},{"given":"Claudio","family":"De Stefano","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3242-0179","authenticated-orcid":false,"given":"Francesco","family":"Fontanella","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2019-2826","authenticated-orcid":false,"given":"Angelo","family":"Marcelli","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2911-9737","authenticated-orcid":false,"given":"Antonio","family":"Parziale","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.engappai.2022.104822_b1","article-title":"Results and challenges of artificial neural networks used for decision making and control in medical applications","volume":"17","author":"Albu","year":"2019","journal-title":"Facta Univ. Ser.: Mech. Eng."},{"issue":"5","key":"10.1016\/j.engappai.2022.104822_b2","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1212\/WNL.0b013e31827f0fd1","article-title":"Criteria for the diagnosis of corticobasal degeneration","volume":"80","author":"Armstrong","year":"2013","journal-title":"Neurology"},{"key":"10.1016\/j.engappai.2022.104822_b3","series-title":"Pattern Recognition and Machine Learning (Information Science and Statistics)","author":"Bishop","year":"2006"},{"key":"10.1016\/j.engappai.2022.104822_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106731","article-title":"A unified form of fuzzy C-means and K-means algorithms and its partitional implementation","volume":"214","author":"Borlea","year":"2021","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.engappai.2022.104822_b5","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.engappai.2022.104822_b6","series-title":"Classification and Regression Trees","author":"Breiman","year":"1984"},{"key":"10.1016\/j.engappai.2022.104822_b7","series-title":"2020 IEEE Symposium on Computers and Communications (ISCC)","first-page":"1","article-title":"Parkinson\u2019s disease diagnosis: Towards grammar-based explainable artificial intelligence","author":"Cavaliere","year":"2020"},{"key":"10.1016\/j.engappai.2022.104822_b8","first-page":"27:1","article-title":"LIBSVM: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"10.1016\/j.engappai.2022.104822_b9","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.procs.2018.10.141","article-title":"An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis","volume":"141","author":"Cilia","year":"2018","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.engappai.2022.104822_b10","series-title":"Italian Workshop on Artificial Life and Evolutionary Computation","first-page":"113","article-title":"How word choice affects cognitive impairment detection by handwriting analysis: A preliminary study","author":"Cilia","year":"2019"},{"key":"10.1016\/j.engappai.2022.104822_b11","series-title":"International Conference on Computer Analysis of Images and Patterns","first-page":"143","article-title":"Handwriting analysis to support alzheimer\u2019s disease diagnosis: a preliminary study","author":"Cilia","year":"2019"},{"key":"10.1016\/j.engappai.2022.104822_b12","series-title":"International Conference on Image Analysis and Processing","first-page":"683","article-title":"Using handwriting features to characterize cognitive impairment","author":"Cilia","year":"2019"},{"key":"10.1016\/j.engappai.2022.104822_b13","series-title":"Pattern Recognition. ICPR International Workshops and Challenges","first-page":"559","article-title":"A multi classifier approach for supporting alzheimer\u2019s diagnosis based on handwriting analysis","author":"De\u00a0Gregorio","year":"2021"},{"key":"10.1016\/j.engappai.2022.104822_b14","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.artmed.2016.01.004","article-title":"Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson\u2019s disease","volume":"67","author":"Drot\u00e1r","year":"2016","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.engappai.2022.104822_b15","series-title":"Pattern Classification","author":"Duda","year":"2001"},{"key":"10.1016\/j.engappai.2022.104822_b16","series-title":"Practical Methods of Optimization","author":"Fletcher","year":"1987"},{"issue":"200","key":"10.1016\/j.engappai.2022.104822_b17","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1080\/01621459.1937.10503522","article-title":"The use of ranks to avoid the assumption of normality implicit in the analysis of variance","volume":"32","author":"Friedman","year":"1937","journal-title":"J. Amer. Statist. Assoc."},{"issue":"9","key":"10.1016\/j.engappai.2022.104822_b18","doi-asserted-by":"crossref","first-page":"960","DOI":"10.2174\/1567205014666170309120708","article-title":"Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, alzheimer disease and healthy controls","volume":"14","author":"Garre-Olmo","year":"2017","journal-title":"Curr. Alzheimer Res."},{"key":"10.1016\/j.engappai.2022.104822_b19","series-title":"Deep Learning","first-page":"200","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.engappai.2022.104822_b20","series-title":"The Elements of Statistical Learning: Data Mining, Inference and Prediction","author":"Hastie","year":"2009"},{"issue":"10","key":"10.1016\/j.engappai.2022.104822_b21","doi-asserted-by":"crossref","first-page":"247","DOI":"10.3390\/info9100247","article-title":"Dynamic handwriting analysis for supporting earlier parkinson\u2019s disease diagnosis","volume":"9","author":"Impedovo","year":"2018","journal-title":"Information"},{"key":"10.1016\/j.engappai.2022.104822_b22","unstructured":"Isenkul, M., Sakar, B., Kursun, O., 2014. Improved spiral test using digitized graphics tablet for monitoring Parkinson\u2019s disease. In: Proc. of the Int\u2019L Conf. on E-Health and Telemedicine, pp. 171\u2013175."},{"key":"10.1016\/j.engappai.2022.104822_b23","series-title":"MedInfo","first-page":"168","article-title":"Handwriting features of multiple drawing tests for early detection of alzheimer\u2019s disease: A preliminary result","author":"Ishikawa","year":"2019"},{"issue":"3","key":"10.1016\/j.engappai.2022.104822_b24","doi-asserted-by":"crossref","first-page":"295","DOI":"10.3233\/IDT-180003","article-title":"Proficient 3-class classification model for confident overlap value based fuzzified aquatic information extracted tsunami prediction","volume":"13","author":"Jain","year":"2019","journal-title":"Intell. Decis. Technol."},{"issue":"8","key":"10.1016\/j.engappai.2022.104822_b25","doi-asserted-by":"crossref","first-page":"1136","DOI":"10.1109\/LSP.2018.2794500","article-title":"Characterizing early-stage alzheimer through spatiotemporal dynamics of handwriting","volume":"25","author":"Kahindo","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.engappai.2022.104822_b26","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1016\/S0140-6736(14)61393-3","article-title":"Parkinson\u2019s diseases","volume":"386","author":"Kalia","year":"2015","journal-title":"Lancet"},{"issue":"3","key":"10.1016\/j.engappai.2022.104822_b27","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/34.667881","article-title":"On combining classifiers","volume":"20","author":"Kittler","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2022.104822_b28","series-title":"Self-Organizing Maps","first-page":"175","article-title":"Learning vector quantization","author":"Kohonen","year":"1995"},{"key":"10.1016\/j.engappai.2022.104822_b29","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1038\/s41582-020-0377-8","article-title":"Applications of machine learning to diagnosis and treatment of neurodegenerative diseases","volume":"16","author":"Myszczynska","year":"2020","journal-title":"Nat. Rev. Neurol."},{"key":"10.1016\/j.engappai.2022.104822_b30","first-page":"1","article-title":"Applications of machine learning to diagnosis and treatment of neurodegenerative diseases","author":"Myszczynska","year":"2020","journal-title":"Nat. Rev. Neurol."},{"key":"10.1016\/j.engappai.2022.104822_b31","series-title":"Distribution-Free Multiple Comparisons","author":"Nemenyi","year":"1963"},{"key":"10.1016\/j.engappai.2022.104822_b32","series-title":"13th International Conference on Bioinformatics and Bioengineering","article-title":"A new modality for quantitative evaluation of parkinson\u2019s disease: In-air movement","author":"P.\u00a0Drot\u00e1r","year":"2013"},{"key":"10.1016\/j.engappai.2022.104822_b33","series-title":"International Conference on Image Analysis and Processing","first-page":"196","article-title":"A decision tree for automatic diagnosis of parkinson\u2019s disease from offline drawing samples: experiments and findings","author":"Parziale","year":"2019"},{"key":"10.1016\/j.engappai.2022.104822_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101984","article-title":"Cartesian genetic programming for diagnosis of parkinson disease through handwriting analysis: Performance vs. interpretability issues","volume":"111","author":"Parziale","year":"2021","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.engappai.2022.104822_b35","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2022.104822_b36","series-title":"2015 IEEE 28th International Symposium on Computer-Based Medical Systems","first-page":"171","article-title":"A step towards the automated diagnosis of parkinson\u2019s disease: Analyzing handwriting movements","author":"Pereira","year":"2015"},{"key":"10.1016\/j.engappai.2022.104822_b37","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.cmpb.2016.08.005","article-title":"A new computer vision-based approach to aid the diagnosis of parkinson\u2019s disease","volume":"136","author":"Pereira","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.engappai.2022.104822_b38","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.artmed.2018.08.007","article-title":"A survey on computer-assisted parkinson\u2019s disease diagnosis","volume":"95","author":"Pereira","year":"2019","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.engappai.2022.104822_b39","doi-asserted-by":"crossref","unstructured":"Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P., 2016b. Deep learning-aided parkinson\u2019s disease diagnosis from handwritten dynamics. In: Proceedings of the SIBGRAPI 2016 - Conference on Graphics, Patterns and Images, pp. 340\u2013346.","DOI":"10.1109\/SIBGRAPI.2016.054"},{"key":"10.1016\/j.engappai.2022.104822_b40","series-title":"International Conference on Image Analysis and Processing","first-page":"290","article-title":"Early diagnosis of neurodegenerative diseases by handwritten signature analysis","author":"Pirlo","year":"2015"},{"key":"10.1016\/j.engappai.2022.104822_b41","series-title":"International Conference on Image Analysis and Processing","first-page":"290","article-title":"Early diagnosis of neurodegenerative diseases by handwritten signature analysis","author":"Pirlo","year":"2015"},{"issue":"2","key":"10.1016\/j.engappai.2022.104822_b42","article-title":"Applications of signatures to expert systems modelling","volume":"11","author":"Pozna","year":"2014","journal-title":"Acta Polytech. Hung."},{"issue":"7","key":"10.1016\/j.engappai.2022.104822_b43","doi-asserted-by":"crossref","first-page":"4625","DOI":"10.1109\/TIM.2020.2983531","article-title":"Evolving fuzzy models for prosthetic hand myoelectric-based control","volume":"69","author":"Precup","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"6088","key":"10.1016\/j.engappai.2022.104822_b44","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2022.104822_b45","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.humov.2018.04.007","article-title":"A paradigm for emulating the early learning stage of handwriting: Performance comparison between healthy controls and parkinson\u2019s disease patients in drawing loop shapes","volume":"65","author":"Senatore","year":"2019","journal-title":"Hum. Mov. Sci."},{"key":"10.1016\/j.engappai.2022.104822_b46","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.humov.2018.04.007","article-title":"A paradigm for emulating the early learning stage of handwriting: Performance comparison between healthy controls and parkinson\u2019s disease patients in drawing loop shapes","volume":"65","author":"Senatore","year":"2019","journal-title":"Hum. Mov. Sci."},{"issue":"1s","key":"10.1016\/j.engappai.2022.104822_b47","doi-asserted-by":"crossref","DOI":"10.1145\/3344998","article-title":"Machine learning techniques for the diagnosis of alzheimer\u2019s disease: A review","volume":"16","author":"Tanveer","year":"2020","journal-title":"ACM Trans. Multimedia Comput. Commun. Appl."},{"issue":"21","key":"10.1016\/j.engappai.2022.104822_b48","doi-asserted-by":"crossref","first-page":"4666","DOI":"10.3390\/app9214666","article-title":"Dynamic handwriting analysis for neurodegenerative disease assessment: A literary review","volume":"9","author":"Vessio","year":"2019","journal-title":"Appl. Sci."},{"issue":"4","key":"10.1016\/j.engappai.2022.104822_b49","doi-asserted-by":"crossref","first-page":"P228","DOI":"10.1093\/geronb\/61.4.P228","article-title":"Handwriting process variables discriminating mild alzheimer\u2019s disease and mild cognitive impairment","volume":"61","author":"Werner","year":"2006","journal-title":"J. Gerontol. Ser. B: Psychol. Sci. Soc. Sci."},{"issue":"1\u20132","key":"10.1016\/j.engappai.2022.104822_b50","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s10994-010-5221-8","article-title":"Dual coordinate descent methods for logistic regression and maximum entropy models","volume":"85","author":"Yu","year":"2011","journal-title":"Mach. Learn."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622000902?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622000902?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T20:16:33Z","timestamp":1678565793000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622000902"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":50,"alternative-id":["S0952197622000902"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.104822","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Diagnosing Alzheimer\u2019s disease from on-line handwriting: A novel dataset and performance benchmarking","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.104822","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104822"}}