{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T22:44:04Z","timestamp":1744325044546},"reference-count":72,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.engappai.2022.104667","type":"journal-article","created":{"date-parts":[[2022,1,31]],"date-time":"2022-01-31T13:03:01Z","timestamp":1643634181000},"page":"104667","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Motion parameters measurement of user-defined key points using 3D pose estimation"],"prefix":"10.1016","volume":"110","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6250-4218","authenticated-orcid":false,"given":"Xin","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4334-0921","authenticated-orcid":false,"given":"Yonghui","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3695-3909","authenticated-orcid":false,"given":"Lianming","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2022.104667_b1","series-title":"2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies. ISMSIT","first-page":"1","article-title":"Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following","author":"Altan","year":"2020"},{"key":"10.1016\/j.engappai.2022.104667_b2","series-title":"2014 22nd Signal Processing And Communications Applications Conference. SIU","first-page":"1686","article-title":"The controller of the camera used in target tracking for unmanned vehicle with model predictive controller","author":"Altan","year":"2014"},{"key":"10.1016\/j.engappai.2022.104667_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2019.106548","article-title":"Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances","volume":"138","author":"Altan","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2022.104667_b4","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3389\/fnsys.2019.00020","article-title":"Deepbehavior: A deep learning toolbox for automated analysis of animal and human behavior imaging data","volume":"13","author":"Arac","year":"2019","journal-title":"Front. Syst. Neurosci."},{"key":"10.1016\/j.engappai.2022.104667_b5","doi-asserted-by":"crossref","first-page":"4560","DOI":"10.1038\/s41467-020-18441-5","article-title":"Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio","volume":"11","author":"Bala","year":"2020","journal-title":"Nature Commun."},{"issue":"1","key":"10.1016\/j.engappai.2022.104667_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1137\/S1064827595289108","article-title":"A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems","volume":"21","author":"Branch","year":"1999","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.engappai.2022.104667_b7","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1007\/BF01580735","article-title":"Approximate solution of the trust region problem by minimization over two-dimensional subspaces","volume":"40","author":"Byrd","year":"1988","journal-title":"Math. Program."},{"key":"10.1016\/j.engappai.2022.104667_b8","doi-asserted-by":"crossref","unstructured":"Chen, X., Lin, K.-Y., Liu, W., Qian, C., Lin, L., 2019. Weakly-supervised discovery of geometry-aware representation for 3d human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10895\u201310904.","DOI":"10.1109\/CVPR.2019.01115"},{"key":"10.1016\/j.engappai.2022.104667_b9","doi-asserted-by":"crossref","first-page":"24499","DOI":"10.1007\/s11042-018-5755-5","article-title":"Obtaining three-dimensional trajectory of multiple fish in water tank via video tracking","volume":"77","author":"Cheng","year":"2018","journal-title":"Multimedia Tools Appl."},{"issue":"6","key":"10.1016\/j.engappai.2022.104667_b10","doi-asserted-by":"crossref","first-page":"663","DOI":"10.26599\/TST.2018.9010100","article-title":"Deep learning based 2D human pose estimation: A survey","volume":"24","author":"Dang","year":"2019","journal-title":"Tsinghua Sci. Technol."},{"key":"10.1016\/j.engappai.2022.104667_b11","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1038\/s41592-021-01106-6","article-title":"Geometric deep learning enables 3D kinematic profiling across species and environments","volume":"18","author":"Dunn","year":"2021","journal-title":"Nature Methods"},{"key":"10.1016\/j.engappai.2022.104667_b12","series-title":"Proceedings of the International Conference on Advanced Intelligent Systems And Informatics 2019","first-page":"901","article-title":"Key point detection techniques","author":"Eltanany","year":"2020"},{"key":"10.1016\/j.engappai.2022.104667_b13","series-title":"Computer Vision: A Modern Approach. (Second Edition)","first-page":"792","author":"Forsyth","year":"2011"},{"key":"10.1016\/j.engappai.2022.104667_b14","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.47994","article-title":"Deepposekit, a software toolkit for fast and robust animal pose estimation using deep learning","volume":"8","author":"Graving","year":"2019","journal-title":"eLife"},{"key":"10.1016\/j.engappai.2022.104667_b15","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.48571","article-title":"DeepFly3D, A deep learning-based approach for 3D limb and appendage tracking in tethered, adult drosophila","volume":"8","author":"G\u00fcnel","year":"2019","journal-title":"eLife"},{"key":"10.1016\/j.engappai.2022.104667_b16","series-title":"Computer And Robot Vision","author":"Haralock","year":"1991"},{"issue":"2","key":"10.1016\/j.engappai.2022.104667_b17","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1006\/cviu.1997.0547","article-title":"Triangulation","volume":"68","author":"Hartley","year":"1997","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.engappai.2022.104667_b18","first-page":"1","article-title":"Deep reinforcement learning for intelligent transportation systems: A survey","author":"Haydari","year":"2020","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.engappai.2022.104667_b19","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.engappai.2022.104667_b20","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1038\/s41557-020-0544-y","article-title":"Deep-neural-network solution of the electronic Schr\u00f6dinger equation","volume":"12","author":"Hermann","year":"2020","journal-title":"Nature Chem."},{"key":"10.1016\/j.engappai.2022.104667_b21","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H., 2019. Searching for MobileNetV3. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. ICCV.","DOI":"10.1109\/ICCV.2019.00140"},{"key":"10.1016\/j.engappai.2022.104667_b22","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.optlaseng.2018.11.005","article-title":"Research on multi-camera calibration and point cloud correction method based on three-dimensional calibration object","volume":"115","author":"Huang","year":"2019","journal-title":"Opt. Lasers Eng."},{"key":"10.1016\/j.engappai.2022.104667_b23","series-title":"Acinoset: A 3D pose estimation dataset and baseline models for cheetahs in the wild","author":"Joska","year":"2021"},{"key":"10.1016\/j.engappai.2022.104667_b24","doi-asserted-by":"crossref","first-page":"2535","DOI":"10.1038\/s41467-021-22869-8","article-title":"Copulanet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction","volume":"12","author":"Ju","year":"2021","journal-title":"Nature Commun."},{"issue":"13","key":"10.1016\/j.engappai.2022.104667_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.celrep.2021.109730","article-title":"Anipose: A toolkit for robust markerless 3D pose estimation","volume":"36","author":"Karashchuk","year":"2021","journal-title":"Cell Rep."},{"key":"10.1016\/j.engappai.2022.104667_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.tafmec.2020.102554","article-title":"Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis","volume":"107","author":"Khatir","year":"2020","journal-title":"Theor. Appl. Fract. Mech."},{"key":"10.1016\/j.engappai.2022.104667_b27","article-title":"Optiflex: video-based animal pose estimation using deep learning enhanced by optical flow","author":"Liu","year":"2020","journal-title":"BioRxiv"},{"key":"10.1016\/j.engappai.2022.104667_b28","doi-asserted-by":"crossref","first-page":"145049","DOI":"10.1109\/ACCESS.2019.2945606","article-title":"3-d video tracking of multiple fish in a water tank","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.engappai.2022.104667_b29","doi-asserted-by":"crossref","first-page":"3913","DOI":"10.1109\/TCYB.2020.3020217","article-title":"Communication and interaction with semiautonomous ground vehicles by force control steering","volume":"51","author":"Mart\u00ednez-Garc\u00eda","year":"2021","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.engappai.2022.104667_b30","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1177\/0018720819881008","article-title":"Memory pattern identification for feedback tracking control in human\u2013machine systems","volume":"63","author":"Mart\u00ednez-Garc\u00eda","year":"2021","journal-title":"Hum. Factors"},{"key":"10.1016\/j.engappai.2022.104667_b31","doi-asserted-by":"crossref","unstructured":"Mathis, A., Biasi, T., Schneider, S., Yuksekgonul, M., Rogers, B., Bethge, M., Mathis, M.W., 2021. Pretraining boosts out-of-domain robustness for pose estimation. In: Proceedings Of The IEEE\/CVF Winter Conference on Applications of Computer Vision. WACV, pp. 1859\u20131868.","DOI":"10.1109\/WACV48630.2021.00190"},{"key":"10.1016\/j.engappai.2022.104667_b32","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.1038\/s41593-018-0209-y","article-title":"Deeplabcut: markerless pose estimation of user-defined body parts with deep learning","volume":"21","author":"Mathis","year":"2018","journal-title":"Nature Neurosci."},{"key":"10.1016\/j.engappai.2022.104667_b33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.conb.2019.10.008","article-title":"Deep learning tools for the measurement of animal behavior in neuroscience","volume":"60","author":"Mathis","year":"2020","journal-title":"Curr. Opin. Neurobiol."},{"key":"10.1016\/j.engappai.2022.104667_b34","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1007\/s003480050366","article-title":"PIV measurements of a microchannel flow","volume":"27","author":"Meinhart","year":"1999","journal-title":"Exp. Fluids"},{"issue":"19","key":"10.1016\/j.engappai.2022.104667_b35","doi-asserted-by":"crossref","DOI":"10.3390\/s20195687","article-title":"Motion capture technology in industrial applications: A systematic review","volume":"20","author":"Menolotto","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2022.104667_b36","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.procs.2019.01.018","article-title":"Human motion tracking: A comparative study","volume":"148","author":"Mrabti","year":"2019","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.engappai.2022.104667_b37","doi-asserted-by":"crossref","first-page":"2152","DOI":"10.1038\/s41596-019-0176-0","article-title":"Using DeepLabCut for 3D markerless pose estimation across species and behaviors","volume":"14","author":"Nath","year":"2019","journal-title":"Nat. Protoc."},{"key":"10.1016\/j.engappai.2022.104667_b38","series-title":"Computer Vision \u2013 ECCV 2016","first-page":"483","article-title":"Stacked hourglass networks for human pose estimation","author":"Newell","year":"2016"},{"key":"10.1016\/j.engappai.2022.104667_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfracmech.2020.107085","article-title":"A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction","volume":"235","author":"Nguyen-Le","year":"2020","journal-title":"Eng. Fract. Mech."},{"key":"10.1016\/j.engappai.2022.104667_b40","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1007\/s42452-019-0695-x","article-title":"Predicting running injury using kinematic and kinetic parameters generated by an optical motion capture system","volume":"1","author":"Onal","year":"2019","journal-title":"SN Appl. Sci."},{"key":"10.1016\/j.engappai.2022.104667_b41","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1038\/s41592-018-0234-5","article-title":"Fast animal pose estimation using deep neural networks","volume":"16","author":"Pereira","year":"2019","journal-title":"Nature Methods"},{"key":"10.1016\/j.engappai.2022.104667_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2020.103256","article-title":"Simple and precise multi-view camera calibration for 3D reconstruction","volume":"123","author":"Perez","year":"2020","journal-title":"Comput. Ind."},{"issue":"6","key":"10.1016\/j.engappai.2022.104667_b43","article-title":"Dynamics: Theory and application of Kane\u2019s method","volume":"11","author":"Roithmayr","year":"2016","journal-title":"J. Comput. Nonlinear Dyn."},{"key":"10.1016\/j.engappai.2022.104667_b44","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1186\/s13673-020-00256-4","article-title":"Multiple kinect based system to monitor and analyze key performance indicators of physical training","volume":"10","author":"Ryselis","year":"2020","journal-title":"Hum.-Cent. Comput. Inf. Sci."},{"key":"10.1016\/j.engappai.2022.104667_b45","series-title":"Quality Measurement: The Indispensable Bridge Between Theory And Reality (No Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation And Measurement Technology Conference And IMEKO Tec, vol. 1","first-page":"367","article-title":"Optical 3D motion measurement","author":"Sabel","year":"1996"},{"key":"10.1016\/j.engappai.2022.104667_b46","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.compag.2015.12.014","article-title":"Automated multiple fish tracking in three-dimension using a structured light sensor","volume":"121","author":"Saberioon","year":"2016","journal-title":"Comput. Electron. Agricult."},{"key":"10.1016\/j.engappai.2022.104667_b47","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20134520.","DOI":"10.1109\/CVPR.2018.00474"},{"key":"10.1016\/j.engappai.2022.104667_b48","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1016\/j.oceaneng.2016.11.055","article-title":"Bcf swimming locomotion for autonomous underwater robots: a review and a novel solution to improve control and efficiency","volume":"130","author":"Scaradozzi","year":"2017","journal-title":"Ocean Eng."},{"key":"10.1016\/j.engappai.2022.104667_b49","article-title":"Detection of solder paste defects with an optimization-based deep learning model using image processing techniques","volume":"ahead-of-print","author":"Sezer","year":"2021","journal-title":"Solder. Surf. Mount Technol."},{"key":"10.1016\/j.engappai.2022.104667_b50","series-title":"Computer Vision: Algorithms and Applications","author":"Szeliski","year":"2010"},{"key":"10.1016\/j.engappai.2022.104667_b51","series-title":"Proceedings of the 36th International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: Rethinking model scaling for convolutional neural networks","volume":"vol. 97","author":"Tan","year":"2019"},{"key":"10.1016\/j.engappai.2022.104667_b52","series-title":"Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques","first-page":"242","article-title":"Transfer learning","author":"Torrey","year":"2010"},{"key":"10.1016\/j.engappai.2022.104667_b53","doi-asserted-by":"crossref","unstructured":"Toshev, A., Szegedy, C., 2014. DeepPose: Human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR.","DOI":"10.1109\/CVPR.2014.214"},{"key":"10.1016\/j.engappai.2022.104667_b54","series-title":"Vision Algorithms: Theory And Practice","first-page":"298","article-title":"Bundle adjustment \u2014 A modern synthesis","author":"Triggs","year":"2000"},{"key":"10.1016\/j.engappai.2022.104667_b55","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.measurement.2018.10.087","article-title":"Multi-camera calibration for accurate geometric measurements in industrial environments","volume":"134","author":"Usamentiaga","year":"2019","journal-title":"Measurement"},{"issue":"1","key":"10.1016\/j.engappai.2022.104667_b56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0146682","article-title":"Automated reconstruction of three-dimensional fish motion, forces, and torques","volume":"11","author":"Voesenek","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.engappai.2022.104667_b57","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1007\/s11633-018-1115-1","article-title":"Current researches and future development trend of intelligent robot: A review","volume":"15","author":"Wang","year":"2018","journal-title":"Int. J. Autom. Comput."},{"key":"10.1016\/j.engappai.2022.104667_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108362","article-title":"Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching","volume":"169","author":"Wang","year":"2021","journal-title":"Measurement"},{"issue":"2","key":"10.1016\/j.engappai.2022.104667_b59","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/S1672-6529(13)60217-6","article-title":"A three-dimensional kinematics analysis of a koi carp pectoral fin by digital image processing","volume":"10","author":"Wang","year":"2013","journal-title":"J. Bionic Eng."},{"issue":"1","key":"10.1016\/j.engappai.2022.104667_b60","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/S1672-6529(09)60190-6","article-title":"Measuring the three-dimensional kinematics of a free-swimming koi carp by video tracking method","volume":"7","author":"Wu","year":"2010","journal-title":"J. Bionic Eng."},{"key":"10.1016\/j.engappai.2022.104667_b61","article-title":"Synchronization methods of multiple high frame rate industrial cameras using a general-purpose computer","author":"Wu","year":"2021","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.engappai.2022.104667_b62","series-title":"2010 International Conference on Optoelectronics and Image Processing, vol. 1","first-page":"181","article-title":"A video tracking system for limb motion measurement in small animals","author":"Xu","year":"2010"},{"key":"10.1016\/j.engappai.2022.104667_b63","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1108\/SR-10-2018-0270","article-title":"Motion capture sensing techniques used in human upper limb motion: a review","volume":"39","author":"Yahya","year":"2019","journal-title":"Sensor Rev."},{"issue":"2","key":"10.1016\/j.engappai.2022.104667_b64","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1109\/LRA.2020.2965893","article-title":"Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection","volume":"5","author":"Yang","year":"2020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.engappai.2022.104667_b65","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.optlastec.2018.07.054","article-title":"Accurate calibration approach for non-overlapping multi-camera system","volume":"110","author":"Yang","year":"2019","journal-title":"Opt. Laser Technol."},{"issue":"1","key":"10.1016\/j.engappai.2022.104667_b66","doi-asserted-by":"crossref","first-page":"638","DOI":"10.3390\/s110100638","article-title":"Sensing movement: Microsensors for body motion measurement","volume":"11","author":"Zeng","year":"2011","journal-title":"Sensors"},{"issue":"11","key":"10.1016\/j.engappai.2022.104667_b67","doi-asserted-by":"crossref","first-page":"1330","DOI":"10.1109\/34.888718","article-title":"A flexible new technique for camera calibration","volume":"22","author":"Zhang","year":"2000","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2022.104667_b68","series-title":"A Matrix Algebra Approach to Artificial Intelligence","first-page":"223","article-title":"Machine learning","author":"Zhang","year":"2020"},{"key":"10.1016\/j.engappai.2022.104667_b69","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Park, H.S., 2020. Multiview supervision by registration. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 420\u2013428.","DOI":"10.1109\/WACV45572.2020.9093591"},{"key":"10.1016\/j.engappai.2022.104667_b70","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Park, H.S., 2020. Multiview supervision by registration. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision. WACV.","DOI":"10.1109\/WACV45572.2020.9093591"},{"issue":"5","key":"10.1016\/j.engappai.2022.104667_b71","doi-asserted-by":"crossref","first-page":"943","DOI":"10.1109\/JSEN.2011.2166066","article-title":"Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion","volume":"12","author":"Zhao","year":"2012","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.engappai.2022.104667_b72","series-title":"Computer Vision \u2013 ECCV 2016","first-page":"766","article-title":"Fast global registration","author":"Zhou","year":"2016"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622000045?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197622000045?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:42:47Z","timestamp":1714254167000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197622000045"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":72,"alternative-id":["S0952197622000045"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2022.104667","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Motion parameters measurement of user-defined key points using 3D pose estimation","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2022.104667","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104667"}}