{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T18:51:23Z","timestamp":1720464683144},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.engappai.2021.104550","type":"journal-article","created":{"date-parts":[[2021,11,24]],"date-time":"2021-11-24T17:42:23Z","timestamp":1637775743000},"page":"104550","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Regularized twin minimax probability machine for pattern classification and regression"],"prefix":"10.1016","volume":"107","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5263-1870","authenticated-orcid":false,"given":"Jun","family":"Ma","sequence":"first","affiliation":[]},{"given":"Guolin","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2021.104550_b1","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10107-002-0339-5","article-title":"Second-order cone programming","volume":"95","author":"Alizadeh","year":"2003","journal-title":"Math. Program."},{"issue":"6","key":"10.1016\/j.engappai.2021.104550_b2","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1080\/10556780903483356","article-title":"Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines","volume":"25","author":"Alvarez","year":"2010","journal-title":"Optim. Methods Softw."},{"key":"10.1016\/j.engappai.2021.104550_b3","series-title":"International Conference on Intelligent Sensing & Information Processing","article-title":"Robust classification of noisy data using second order cone programming approach","author":"Bhattacharyya","year":"2004"},{"key":"10.1016\/j.engappai.2021.104550_b4","first-page":"1417","article-title":"Second order cone programming formulations for feature selection","volume":"5","author":"Bhattacharyya","year":"2004","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2021.104550_b5","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.knosys.2018.05.037","article-title":"An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme","volume":"158","author":"Bi","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2021.104550_b6","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.eswa.2016.01.044","article-title":"A second-order cone programming formulation for nonparallel hyperplane support vector machine","volume":"54","author":"Carrasco","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2021.104550_b7","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"6","key":"10.1016\/j.engappai.2021.104550_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10994-016-5616-2","article-title":"High-probability minimax probability machines","volume":"106","author":"Cousins","year":"2017","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.engappai.2021.104550_b9","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.asoc.2012.08.003","article-title":"A minimax probabilistic approach to feature transformation for multi-class data","volume":"13","author":"Deng","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2021.104550_b10","series-title":"Advances in Neural Information Processing Systems (NIPS), vol. 9","first-page":"155","article-title":"Support vector regression machines","author":"Drucker","year":"1997"},{"issue":"7","key":"10.1016\/j.engappai.2021.104550_b11","doi-asserted-by":"crossref","first-page":"1646","DOI":"10.1109\/TNNLS.2016.2544779","article-title":"Structural minimax probability machine","volume":"28","author":"Gu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2021.104550_b12","doi-asserted-by":"crossref","unstructured":"He, L., Guo, Z., Huang, K., Xu, Z., 2019. Deep minimax probability machine. In: (2019) International Conference on Data Mining Workshops (ICDMW), pp. 869\u2013876.","DOI":"10.1109\/ICDMW.2019.00127"},{"key":"10.1016\/j.engappai.2021.104550_b13","series-title":"CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on","article-title":"Learning classifiers from imbalanced data based on biased minimax probability machine. Computer vision and pattern recognition, 2004","author":"Huang","year":"2004"},{"key":"10.1016\/j.engappai.2021.104550_b14","first-page":"1253","article-title":"The minimum error minimax probability machine","volume":"5","author":"Huang","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"5","key":"10.1016\/j.engappai.2021.104550_b15","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","article-title":"Twin support vector machines for pattern classification. ieee trans pattern anal mach intell","volume":"29","author":"Jayadeva","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.engappai.2021.104550_b16","first-page":"1","article-title":"Dynamic minimax probability machine-based approach for fault diagnosis using pairwise discriminate analysis","volume":"27","author":"Jiang","year":"2017","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"1","key":"10.1016\/j.engappai.2021.104550_b17","first-page":"192","article-title":"Minimax probability machine","volume":"37","author":"Lanckriet","year":"2001","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2021.104550_b18","series-title":"International Conference on Neural Information Processing Systems","first-page":"905","article-title":"Robust novelty detection with single-class MPM","author":"Lanckriet","year":"2002"},{"key":"10.1016\/j.engappai.2021.104550_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2018.04.005","article-title":"Robust twin support vector regression via second-order cone programming","author":"L\u00f3pez","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2021.104550_b20","article-title":"Twin minimax probability extreme learning machine for pattern recognition","author":"Ma","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.engappai.2021.104550_b21","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1007\/s10489-016-0764-4","article-title":"A second-order cone programming formulation for twin support vector machines","volume":"45","author":"Maldonado","year":"2016","journal-title":"Appl. Intell."},{"issue":"5","key":"10.1016\/j.engappai.2021.104550_b22","doi-asserted-by":"crossref","first-page":"2070","DOI":"10.1016\/j.patcog.2013.11.021","article-title":"Imbalanced data classification using second-order cone programming support vector machines","volume":"47","author":"Maldonado","year":"2014","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2021.104550_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2018.04.035","article-title":"Ellipsoidal support vector regression based on second-order cone programming","author":"Maldonado","year":"2018","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.engappai.2021.104550_b24","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1214\/aoms\/1177705673","article-title":"Multivariate chebyshev inequalities","volume":"31","author":"Marshall","year":"1960","journal-title":"Ann. Math. Stat."},{"issue":"15","key":"10.1016\/j.engappai.2021.104550_b25","doi-asserted-by":"crossref","first-page":"1995","DOI":"10.1016\/j.patrec.2007.05.021","article-title":"A comparative study of minimax probability machine-based approaches for face recognition","volume":"28","author":"Ng","year":"2007","journal-title":"Pattern Recognit. Lett."},{"issue":"3","key":"10.1016\/j.engappai.2021.104550_b26","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.neunet.2009.07.002","article-title":"Tsvr: an efficient twin support vector machine for regression","volume":"23","author":"Peng","year":"2010","journal-title":"Neural Netw."},{"key":"10.1016\/j.engappai.2021.104550_b27","doi-asserted-by":"crossref","unstructured":"Saketha\u00a0Nath, J., Bhattacharyya, C., 2007. Maximum margin classifiers with specified false positive and false negative error rates. In: Proceedings of the SIAM International Conference on Data Mining, 2007.","DOI":"10.1137\/1.9781611972771.4"},{"key":"10.1016\/j.engappai.2021.104550_b28","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.knosys.2019.04.016","article-title":"Regularized minimax probability machine","volume":"177","author":"Sebasti\u00e1n","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"6","key":"10.1016\/j.engappai.2021.104550_b29","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1109\/TNN.2011.2130540","article-title":"Improvements on twin support vector machines","volume":"22","author":"Shao","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"10.1016\/j.engappai.2021.104550_b30","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1109\/TSMC.2016.2563395","article-title":"Dimension reduction by minimum error minimax probability machine","volume":"47","author":"Song","year":"2017","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"10.1016\/j.engappai.2021.104550_b31","first-page":"9","article-title":"A formulation for minimax probability machine regression","volume":"76","author":"Strohmann","year":"2003","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1\u20134","key":"10.1016\/j.engappai.2021.104550_b32","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1080\/10556789908805766","article-title":"Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones","volume":"11","author":"Sturm","year":"1999","journal-title":"Optim. Methods Softw."},{"key":"10.1016\/j.engappai.2021.104550_b33","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"},{"key":"10.1016\/j.engappai.2021.104550_b34","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.knosys.2019.03.023","article-title":"Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs","volume":"175","author":"Xiao","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.engappai.2021.104550_b35","first-page":"31","article-title":"Twin minimax probability machine for handwritten digit recognition","volume":"8","author":"Xu","year":"2015","journal-title":"Int. J. Hybrid Inf. Technol."},{"issue":"6","key":"10.1016\/j.engappai.2021.104550_b36","first-page":"493","article-title":"A new minimax probabilistic approach and its application in recognition the purity of hybrid seeds","volume":"104","author":"Yang","year":"2015","journal-title":"CMES Comput. Model. Eng. Sci."},{"issue":"8","key":"10.1016\/j.engappai.2021.104550_b37","doi-asserted-by":"crossref","first-page":"1914","DOI":"10.1039\/C5AY01304F","article-title":"Comparison of chemometric approaches for near-infrared spectroscopic data","volume":"8","author":"Yang","year":"2016","journal-title":"Anal. Methods"},{"issue":"37","key":"10.1016\/j.engappai.2021.104550_b38","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.patrec.2013.01.004","article-title":"Laplacian minimax probability machine","volume":"37","author":"Yoshiyama","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.engappai.2021.104550_b39","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.eswa.2017.04.003","article-title":"An up-to-date comparison of state-of-the-art classification algorithms","volume":"82","author":"Zhang","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.engappai.2021.104550_b40","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.knosys.2019.01.031","article-title":"An improved non-parallel universum support vector machine and its safe sample screening rule","volume":"170","author":"Zhao","year":"2019","journal-title":"Knowl.-Based Syst."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762100395X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219762100395X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T20:09:45Z","timestamp":1678565385000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095219762100395X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":40,"alternative-id":["S095219762100395X"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2021.104550","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Regularized twin minimax probability machine for pattern classification and regression","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2021.104550","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104550"}}