{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T05:11:56Z","timestamp":1725513116511},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1733108"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.engappai.2021.104279","type":"journal-article","created":{"date-parts":[[2021,5,4]],"date-time":"2021-05-04T20:25:24Z","timestamp":1620159924000},"page":"104279","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":49,"special_numbering":"C","title":["A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery"],"prefix":"10.1016","volume":"102","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0804-5791","authenticated-orcid":false,"given":"Wanxiang","family":"Li","sequence":"first","affiliation":[]},{"given":"Zhiwu","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Maosheng","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Shiqi","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Baoren","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.engappai.2021.104279_b1","first-page":"854","article-title":"Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT","volume":"22","author":"Altobi","year":"2019","journal-title":"Eng. Sci. Technol."},{"issue":"7","key":"10.1016\/j.engappai.2021.104279_b2","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1177\/0142331215626247","article-title":"Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine","volume":"39","author":"An","year":"2017","journal-title":"Trans. Inst. Meas. Control"},{"key":"10.1016\/j.engappai.2021.104279_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.106683","article-title":"A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks","volume":"140","author":"Chen","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"issue":"1","key":"10.1016\/j.engappai.2021.104279_b4","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TNNLS.2014.2310059","article-title":"Learning understandable neural networks with nonnegative weight constraints","volume":"26","author":"Chorowski","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2021.104279_b5","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.procs.2020.03.359","article-title":"Rolling element bearing fault diagnosis using empirical mode decomposition and hjorth parameters","volume":"167","author":"Grover","year":"2020","journal-title":"Procedia Comput. Sci."},{"issue":"5786","key":"10.1016\/j.engappai.2021.104279_b6","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.engappai.2021.104279_b7","series-title":"An Idea Based on Honey Bee Swarm for Numerical Optimization","author":"Karaboga","year":"2005"},{"issue":"5","key":"10.1016\/j.engappai.2021.104279_b8","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1109\/TIE.2016.2519325","article-title":"An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data","volume":"63","author":"Lei","year":"2016","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2021.104279_b9","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/j.renene.2018.10.031","article-title":"Fault diagnosis of wind turbine based on long short-term memory networks","volume":"133","author":"Lei","year":"2019","journal-title":"Renew. Energy"},{"key":"10.1016\/j.engappai.2021.104279_b10","doi-asserted-by":"crossref","unstructured":"Li, Y., Chai, Y., Zhou, H., Yin, H., 2019. A novel feature extraction method based on discriminative graph regularized autoencoder for fault diagnosis. In: 5th IFAC Symposium on Telematics Applications TA 2019, vol. 52, pp. 25\u201327, Chengdu, China. IFAC-PapersOnLine.","DOI":"10.1016\/j.ifacol.2019.12.420"},{"issue":"8","key":"10.1016\/j.engappai.2021.104279_b11","doi-asserted-by":"crossref","first-page":"1899","DOI":"10.1007\/s10845-020-01543-8","article-title":"Unsupervised rotating machinery fault diagnosis method based on integrated SAE\u2013DBN and a binary processor","volume":"31","author":"Li","year":"2020","journal-title":"J. Intell. Manuf."},{"key":"10.1016\/j.engappai.2021.104279_b12","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.ymssp.2016.02.007","article-title":"Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals","volume":"76\u201377","author":"Li","year":"2016","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b13","article-title":"Rolling bearing fault diagnosis based on STFT-deep learning and sound signals","volume":"2016","author":"Liu","year":"2016","journal-title":"Shock Vib."},{"key":"10.1016\/j.engappai.2021.104279_b14","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.jsv.2016.09.005","article-title":"Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis","volume":"385","author":"Liu","year":"2016","journal-title":"J. Sound Vib."},{"issue":"4","key":"10.1016\/j.engappai.2021.104279_b15","doi-asserted-by":"crossref","first-page":"972","DOI":"10.3390\/s19040972","article-title":"Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network","volume":"19","author":"Liu","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.engappai.2021.104279_b16","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.sigpro.2016.07.028","article-title":"Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification","volume":"130","author":"Lu","year":"2017","journal-title":"Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.chemolab.2019.103814","article-title":"Discriminant autoencoder for feature extraction in fault diagnosis","volume":"192","author":"Luo","year":"2019","journal-title":"Chemometr. Intell. Lab. Syst."},{"key":"10.1016\/j.engappai.2021.104279_b18","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.compind.2018.12.012","article-title":"Ensemble deep learning-based fault diagnosis of rotor bearing systems","volume":"105","author":"Ma","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2021.104279_b19","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1016\/j.measurement.2018.08.010","article-title":"An enhancement denoising autoencoder for rolling bearing fault diagnosis","volume":"130","author":"Meng","year":"2018","journal-title":"Measurement"},{"issue":"12","key":"10.1016\/j.engappai.2021.104279_b20","doi-asserted-by":"crossref","first-page":"2512","DOI":"10.1177\/1077546316688991","article-title":"A novel gearbox fault feature extraction and classification using hilbert empirical wavelet transform, singular value decomposition, and SOM neural network","volume":"24","author":"Merainani","year":"2018","journal-title":"J. Vib. Control"},{"key":"10.1016\/j.engappai.2021.104279_b21","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.asoc.2018.10.036","article-title":"Feature selection based on artificial bee colony and gradient boosting decision tree","volume":"74","author":"Rao","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2021.104279_b22","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.isatra.2014.08.007","article-title":"Application of higher order spectral features and support vector machines for bearing faults classification","volume":"54","author":"Saidi","year":"2015","journal-title":"ISA Trans."},{"issue":"10","key":"10.1016\/j.engappai.2021.104279_b23","doi-asserted-by":"crossref","first-page":"6263","DOI":"10.1109\/TII.2020.2967822","article-title":"Gearbox fault diagnosis using a deep learning model with limited data sample","volume":"16","author":"Saufi","year":"2020","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"11","key":"10.1016\/j.engappai.2021.104279_b24","doi-asserted-by":"crossref","first-page":"5139","DOI":"10.1007\/s12206-018-1012-0","article-title":"Fault diagnosis method of rolling bearing based on deep belief network","volume":"32","author":"Shang","year":"2018","journal-title":"J. Mech. Sci. Technol."},{"key":"10.1016\/j.engappai.2021.104279_b25","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.ymssp.2017.09.026","article-title":"A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders","volume":"102","author":"Shao","year":"2018","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b26","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.ymssp.2017.03.034","article-title":"A novel deep autoencoder feature learning method for rotating machinery fault diagnosis","volume":"95","author":"Shao","year":"2017","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b27","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.compind.2019.01.001","article-title":"Generative adversarial networks for data augmentation in machine fault diagnosis","volume":"106","author":"Shao","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2021.104279_b28","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.engappai.2018.09.010","article-title":"An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder","volume":"76","author":"Shen","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.engappai.2021.104279_b29","article-title":"Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets","author":"Shi","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.engappai.2021.104279_b30","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.ymssp.2015.04.021","article-title":"Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study","volume":"64\u201365","author":"Smith","year":"2015","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b31","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.measurement.2017.12.029","article-title":"A fault diagnosis method for roller bearing based on empirical wavelet transform decomposition with adaptive empirical mode segmentation","volume":"117","author":"Song","year":"2018","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2021.104279_b32","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.measurement.2019.06.029","article-title":"A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings","volume":"146","author":"Sun","year":"2019","journal-title":"Measurement"},{"key":"10.1016\/j.engappai.2021.104279_b33","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.measurement.2014.08.041","article-title":"Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network","volume":"58","author":"Unal","year":"2014","journal-title":"Measurement"},{"issue":"2","key":"10.1016\/j.engappai.2021.104279_b34","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1177\/0954406215573976","article-title":"Two-stage feature selection for bearing fault diagnosis based on dual-tree complex wavelet transform and empirical mode decomposition","volume":"230","author":"Van","year":"2015","journal-title":"Proc. Inst. Mech. Eng. C"},{"key":"10.1016\/j.engappai.2021.104279_b35","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neucom.2018.10.049","article-title":"Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines","volume":"329","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2021.104279_b36","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.compind.2018.12.013","article-title":"A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals","volume":"105","author":"Wang","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2021.104279_b37","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.ymssp.2017.12.031","article-title":"Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings","volume":"106","author":"Wang","year":"2018","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.engappai.2021.104279_b38","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.neucom.2018.05.024","article-title":"An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition","volume":"310","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"issue":"17","key":"10.1016\/j.engappai.2021.104279_b39","doi-asserted-by":"crossref","first-page":"5581","DOI":"10.1109\/JSEN.2017.2726011","article-title":"Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests","volume":"17","author":"Wang","year":"2017","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.engappai.2021.104279_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103966","article-title":"New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data","volume":"96","author":"Wei","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"4","key":"10.1016\/j.engappai.2021.104279_b41","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1109\/TR.2019.2942049","article-title":"A local adaptive minority selection and oversampling method for class-imbalanced fault diagnostics in industrial systems","volume":"69","author":"Wu","year":"2020","journal-title":"IEEE Trans. Reliab."},{"issue":"9","key":"10.1016\/j.engappai.2021.104279_b42","doi-asserted-by":"crossref","first-page":"1716","DOI":"10.1007\/s12206-008-0603-6","article-title":"Random forests classifier for machine fault diagnosis","volume":"22","author":"Yang","year":"2009","journal-title":"J. Mech. Sci. Technol."},{"key":"10.1016\/j.engappai.2021.104279_b43","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.mechmachtheory.2015.03.013","article-title":"Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm","volume":"90","author":"Yang","year":"2015","journal-title":"Mech. Mach. Theory"},{"key":"10.1016\/j.engappai.2021.104279_b44","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.compind.2019.02.015","article-title":"A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis","volume":"108","author":"Yu","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.engappai.2021.104279_b45","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.jmsy.2018.04.005","article-title":"Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning","volume":"48","author":"Zhang","year":"2018","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.engappai.2021.104279_b46","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.image.2018.02.002","article-title":"Lossless-constraint denoising based auto-encoders","volume":"63","author":"Zhang","year":"2018","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.engappai.2021.104279_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.106060","article-title":"Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings","volume":"88","author":"Zhu","year":"2020","journal-title":"Appl. Soft Comput."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197621001263?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197621001263?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:41:01Z","timestamp":1714254061000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197621001263"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":47,"alternative-id":["S0952197621001263"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2021.104279","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2021.104279","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104279"}}