{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:56:12Z","timestamp":1732038972601},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1016\/j.engappai.2020.103545","type":"journal-article","created":{"date-parts":[[2020,2,15]],"date-time":"2020-02-15T02:48:27Z","timestamp":1581734907000},"page":"103545","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Toward optimum fuzzy support vector machines using error distribution"],"prefix":"10.1016","volume":"90","author":[{"given":"Tahereh","family":"Bahraini","sequence":"first","affiliation":[]},{"given":"Saeedeh","family":"Ghazi","sequence":"additional","affiliation":[]},{"given":"Hadi Sadoghi","family":"Yazdi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2020.103545_b1","doi-asserted-by":"crossref","first-page":"2110","DOI":"10.1016\/j.patcog.2015.01.009","article-title":"Fuzzy support vector machines for multi-label classification","volume":"48","author":"Abe","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2020.103545_b2","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.neucom.2012.11.023","article-title":"Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises","volume":"110","author":"An","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2020.103545_b3","first-page":"463","article-title":"Rademacher and Gaussian complexities: Risk bounds and structural results","volume":"3","author":"Bartlett","year":"2002","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2020.103545_b4","series-title":"Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems","author":"Chen","year":"2001"},{"key":"10.1016\/j.engappai.2020.103545_b5","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.engappai.2020.103545_b6","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.knosys.2016.09.032","article-title":"Entropy-based fuzzy support vector machine for imbalanced datasets","volume":"115","author":"Fan","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2020.103545_b7","doi-asserted-by":"crossref","unstructured":"Gao, B.B., Wang, J.J., Wang, Y., Yang, C.Y., 2015. Coordinate descent fuzzy twin support vector machine for classification. In: 14th International Conference on IEEE in Machine Learning and Applications, ICMLA. pp. 7\u201312.","DOI":"10.1109\/ICMLA.2015.35"},{"key":"10.1016\/j.engappai.2020.103545_b8","first-page":"153","article-title":"Approximation error bounds via Rademacher\u2019s complexity","volume":"2","author":"Gnecco","year":"2008","journal-title":"Appl. Math. Sci."},{"key":"10.1016\/j.engappai.2020.103545_b9","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.fss.2015.07.005","article-title":"Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine","volume":"297","author":"Hang","year":"2016","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.engappai.2020.103545_b10","series-title":"Geographic Location Tags on Digital Images","first-page":"156","author":"Joachims","year":"2001"},{"key":"10.1016\/j.engappai.2020.103545_b11","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1109\/72.991432","article-title":"Fuzzy support vector machines","volume":"13","author":"Lin","year":"2002","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.engappai.2020.103545_b12","series-title":"Advanced Lectures on Machine Learning","first-page":"1","article-title":"A few notes on statistical learning theory","volume":"vol. 2600","author":"Mendelson","year":"2003"},{"key":"10.1016\/j.engappai.2020.103545_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2018.07.003","article-title":"A robust fuzzy least squares twin support vector machine for class imbalance learning","author":"Richhariya","year":"2018","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.engappai.2020.103545_b14","series-title":"Pattern Recognition and Neural Networks","author":"Ripley","year":"2007"},{"key":"10.1016\/j.engappai.2020.103545_b15","series-title":"Support Vector Machines","author":"Steinwart","year":"2008"},{"key":"10.1016\/j.engappai.2020.103545_b16","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.neucom.2018.11.024","article-title":"A robust loss function for classification with imbalanced datasets","volume":"331","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2020.103545_b17","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/j.neucom.2015.06.002","article-title":"Hybrid bf\u2013pso and fuzzy support vector machine for diagnosis of fatigue status using emg signal features","volume":"173","author":"Wu","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2020.103545_b18","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.neucom.2012.07.049","article-title":"A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method","volume":"125","author":"Wu","year":"2011","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2020.103545_b19","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.neucom.2015.03.046","article-title":"Confirming robustness of fuzzy support vector machine via \u03be\u2013\u03b1 bound","volume":"162","author":"Yang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2020.103545_b20","article-title":"Algorithm of fuzzy support vector machine based on a piecewise linear fuzzy weight method","volume":"12","author":"Yuan","year":"2018","journal-title":"Int. J. Cogn. Inform. Natur. Intell."},{"key":"10.1016\/j.engappai.2020.103545_b21","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1016\/j.ymssp.2016.09.010","article-title":"Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines","volume":"85","author":"Zhenga","year":"2017","journal-title":"Mech. Syst. Signal Process."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197620300427?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197620300427?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,12]],"date-time":"2020-03-12T05:54:44Z","timestamp":1583992484000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197620300427"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4]]},"references-count":21,"alternative-id":["S0952197620300427"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2020.103545","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2020,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Toward optimum fuzzy support vector machines using error distribution","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2020.103545","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103545"}}