{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T19:10:54Z","timestamp":1726427454585},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T00:00:00Z","timestamp":1569888000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"\u201cFundaci\u00f3 la Caixa\u201d","award":["LCF\/BQ\/EU17\/11590049"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1016\/j.engappai.2019.07.013","type":"journal-article","created":{"date-parts":[[2019,7,29]],"date-time":"2019-07-29T09:59:14Z","timestamp":1564394354000},"page":"590-606","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["An Industrial Multi Agent System for real-time distributed collaborative prognostics"],"prefix":"10.1016","volume":"85","author":[{"given":"Adri\u00e0","family":"Salvador Palau","sequence":"first","affiliation":[]},{"given":"Maharshi Harshadbhai","family":"Dhada","sequence":"additional","affiliation":[]},{"given":"Kshitij","family":"Bakliwal","sequence":"additional","affiliation":[]},{"given":"Ajith Kumar","family":"Parlikad","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2019.07.013_b1","series-title":"12th USENIX Symposium on Operating Systems Design and Implementation (OSDI \u201916)","article-title":"TensorFlow: A system for large-scale machine learning","author":"Abadi","year":"2016"},{"key":"10.1016\/j.engappai.2019.07.013_b2","series-title":"Database Theory ICDT 2001","first-page":"420","article-title":"On the surprising behavior of distance metrics in high dimensional space","author":"Aggarwal","year":"2001"},{"key":"10.1016\/j.engappai.2019.07.013_b3","doi-asserted-by":"crossref","DOI":"10.1243\/09544054JEM858","article-title":"State-of-the-art in product-service systems","author":"Baines","year":"2007","journal-title":"Proc. Inst. Mech. Eng. B. J. Eng. Manuf"},{"key":"10.1016\/j.engappai.2019.07.013_b4","series-title":"INCOM 2018","article-title":"A multi agent system architecture to implement collaborative learning for social industrial assets","author":"Bakliwal","year":"2017"},{"issue":"12","key":"10.1016\/j.engappai.2019.07.013_b5","doi-asserted-by":"crossref","first-page":"1907","DOI":"10.1109\/JSEN.2009.2030284","article-title":"Modeling, detection, and disambiguation of sensor faults for aerospace applications","volume":"9","author":"Balaban","year":"2009","journal-title":"IEEE Sens. J."},{"issue":"3","key":"10.1016\/j.engappai.2019.07.013_b6","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1109\/MIS.2009.89","article-title":"Will intelligent assets take off? Toward self-serving aircraft","volume":"26","author":"Brintrup","year":"2011","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.engappai.2019.07.013_b7","series-title":"2017 IEEE Intern. Conf. Prog. Heal. Man., ICPHM 2017","article-title":"Real-time predictive maintenance for wind turbines using Big Data frameworks","author":"Canizo","year":"2017"},{"issue":"10","key":"10.1016\/j.engappai.2019.07.013_b8","doi-asserted-by":"crossref","first-page":"9031","DOI":"10.1016\/j.eswa.2012.02.050","article-title":"An integrated architecture for fault diagnosis and failure prognosis of complex engineering systems","volume":"39","author":"Chen","year":"2012","journal-title":"Expert. Syst. Appl."},{"key":"10.1016\/j.engappai.2019.07.013_b9","unstructured":"Chollet, F., 2015. Keras: Deep Learning library for Theano and TensorFlow, GitHub Repository."},{"issue":"3","key":"10.1016\/j.engappai.2019.07.013_b10","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1093\/biomet\/63.3.483","article-title":"A conditioned distance ratio method for analyzing spatial patterns","volume":"63","author":"Cox","year":"1976","journal-title":"Biometrika"},{"key":"10.1016\/j.engappai.2019.07.013_b11","doi-asserted-by":"crossref","unstructured":"Desforges, X., Di\u00e9vart, M., Charbonnaud, P., Archim\u00e8de, B., 2012. A distributed Architecture to implement a Prognostic Function for Complex Systems. In: Proc. Annu. Conf. Progn. Health. Manag. Soc.","DOI":"10.36001\/phme.2012.v1i1.1415"},{"key":"10.1016\/j.engappai.2019.07.013_b12","doi-asserted-by":"crossref","DOI":"10.1038\/537S60a","article-title":"Pharmacogenetics: the right drug for you","author":"Drew","year":"2016","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2019.07.013_b13","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise, In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining."},{"key":"10.1016\/j.engappai.2019.07.013_b14","article-title":"A distributed intelligent maintenance system based on artificial immune approach and multi-agent systems","author":"Fasanotti","year":"2014","journal-title":"Industr. Inform. (INDIN)"},{"key":"10.1016\/j.engappai.2019.07.013_b15","doi-asserted-by":"crossref","unstructured":"Fette, I., Melnikov, A., 2011. RFC 6455 - The WebSocket Protocol, Internet Engineering Task Force.","DOI":"10.17487\/rfc6455"},{"key":"10.1016\/j.engappai.2019.07.013_b16","series-title":"Proceedings CIKM \u201994","article-title":"KQML As an agent communication language","author":"Finin","year":"1994"},{"key":"10.1016\/j.engappai.2019.07.013_b17","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.cirpj.2015.05.004","article-title":"Condition based maintenance of machine tools-A review","volume":"10","author":"Goyal","year":"2015","journal-title":"CIRP J. Manuf. Sci. Technol."},{"key":"10.1016\/j.engappai.2019.07.013_b18","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.cirpj.2015.05.004","article-title":"Condition based maintenance of machine tools-A review","volume":"10","author":"Goyal","year":"2015","journal-title":"CIRP J. Manuf. Sci. Technol."},{"key":"10.1016\/j.engappai.2019.07.013_b19","series-title":"PyKQML: An Implementation of KQML Messaging in Python","author":"Gyori","year":"2018"},{"key":"10.1016\/j.engappai.2019.07.013_b20","unstructured":"Hadden, G.D., Bergstrom, P., Bennett, B.H., Vachtsevanos, G., Van\u00a0Dyke, J., 2002. Distributed multi-algorithm diagnostics and prognostics for US Navy ships, In: Proc. 2002 AAAI Spring Symposium."},{"issue":"70","key":"10.1016\/j.engappai.2019.07.013_b21","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1093\/oxfordjournals.aob.a083391","article-title":"A new method for determining the type of distribution of plant individuals","volume":"18","author":"Hopkins","year":"1954","journal-title":"Ann Bot."},{"key":"10.1016\/j.engappai.2019.07.013_b22","first-page":"1","article-title":"Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts","volume":"0","author":"Kiangala","year":"2018","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.engappai.2019.07.013_b23","unstructured":"Kingma, D.P., Ba, J.L., 2015. Adam: a Method for Stochastic Optimization, ICLR 2015."},{"key":"10.1016\/j.engappai.2019.07.013_b24","doi-asserted-by":"crossref","first-page":"3659","DOI":"10.1109\/ACCESS.2016.2587754","article-title":"IoT-based prognostics and systems health management for industrial applications","volume":"4","author":"Kwon","year":"2016","journal-title":"IEEE Access"},{"key":"10.1016\/j.engappai.2019.07.013_b25","doi-asserted-by":"crossref","DOI":"10.1109\/5254.757631","article-title":"Agent communication languages: the current landscape","author":"Labrou","year":"1999","journal-title":"IEEE Intell. Syst"},{"issue":"9","key":"10.1016\/j.engappai.2019.07.013_b26","first-page":"1689","article-title":"Fault detection in a network of similar machines using clustering approach","volume":"53","author":"Lapira","year":"2013","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.engappai.2019.07.013_b27","series-title":"Industrial Agents Emerging Applications of Software Agents in Industry","author":"Leit\u00e3o","year":"2015"},{"key":"10.1016\/j.engappai.2019.07.013_b28","article-title":"A social network of collaborating industrial assets","author":"Li","year":"2018","journal-title":"Proc. Inst. Mech. Eng. O. J. Risk. Reliab"},{"key":"10.1016\/j.engappai.2019.07.013_b29","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.mbs.2016.10.008","article-title":"Analysis of depression trajectory patterns using collaborative learning","volume":"282","author":"Lin","year":"2016","journal-title":"Math Biosci"},{"issue":"1","key":"10.1016\/j.engappai.2019.07.013_b30","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/TR.2017.2767941","article-title":"A collaborative learning framework for estimating many individualized regression models in a heterogeneous population","volume":"67","author":"Lin","year":"2018","journal-title":"IEEE Trans. Rel."},{"issue":"May","key":"10.1016\/j.engappai.2019.07.013_b31","article-title":"Selective sensing of a heterogeneous population of units with dynamic health conditions","volume":"5854","author":"Lin","year":"2018","journal-title":"IISE. Trans. Healthc. Syst. Eng."},{"key":"10.1016\/j.engappai.2019.07.013_b32","doi-asserted-by":"crossref","DOI":"10.1145\/176789.176792","article-title":"Agents that reduce work and information overload","author":"Maes","year":"1994","journal-title":"Commun. ACM"},{"key":"10.1016\/j.engappai.2019.07.013_b33","series-title":"Industrial Adoption of Agent-based Technologies","author":"Marik","year":"2005"},{"key":"10.1016\/j.engappai.2019.07.013_b34","series-title":"WTTE-RNN : Weibull Time to Event Recurrent Neural Network","author":"Martinsson","year":"2016"},{"key":"10.1016\/j.engappai.2019.07.013_b35","doi-asserted-by":"crossref","DOI":"10.21105\/joss.00205","article-title":"Hdbscan: hierarchical density based clustering","volume":"2","author":"McInnes","year":"2017","journal-title":"J. Open. Source. Softw."},{"key":"10.1016\/j.engappai.2019.07.013_b36","article-title":"Exploring the financial consequences of the servitization of manufacturing","author":"Neely","year":"2009","journal-title":"Oper. Man. Res"},{"issue":"3","key":"10.1016\/j.engappai.2019.07.013_b37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1525856.1525863","article-title":"Sensor network data fault types","volume":"5","author":"Ni","year":"2009","journal-title":"ACM. Trans. Sens. Netw."},{"key":"10.1016\/j.engappai.2019.07.013_b38","doi-asserted-by":"crossref","DOI":"10.1017\/S026988890000789X","article-title":"Software agents: an overview","author":"Nwana","year":"1996","journal-title":"Knowl. Eng. Rev"},{"key":"10.1016\/j.engappai.2019.07.013_b39","article-title":"Collaborative prognostics in social asset networks","author":"Palau","year":"2019","journal-title":"Future. Gener. Comput. Syst"},{"key":"10.1016\/j.engappai.2019.07.013_b40","doi-asserted-by":"crossref","unstructured":"Ribot, P., Pencol\u00e9, Y., Combacau, M., 2008. Prognostics for the maintenance of distributed systems, INCOM 2008.","DOI":"10.1109\/ICSMC.2009.5346718"},{"issue":"C","key":"10.1016\/j.engappai.2019.07.013_b41","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: A graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.engappai.2019.07.013_b42","doi-asserted-by":"crossref","unstructured":"Saha, S., Saha, B., Goebel, K., 2008. Distributed prognostics using wireless embedded devices, In: PHM 2008. International Conference on Prognostics and Health Management.","DOI":"10.1109\/PHM.2008.4711467"},{"key":"10.1016\/j.engappai.2019.07.013_b43","doi-asserted-by":"crossref","unstructured":"Salvador Palau, A., Bakliwal, K., Dhada, M.H., Pearce, T., Parlikad, A.K., 2018. Recurrent Neural Networks for real-time distributed collaborative prognostics.","DOI":"10.1109\/ICPHM.2018.8448622"},{"key":"10.1016\/j.engappai.2019.07.013_b44","series-title":"2008 International Conference on Prognostics and Health Management, PHM 2008","article-title":"Damage propagation modeling for aircraft engine run-to-failure simulation","author":"Saxena","year":"2008"},{"key":"10.1016\/j.engappai.2019.07.013_b45","doi-asserted-by":"crossref","DOI":"10.3141\/2143-20","article-title":"Bikesharing in europe, the americas, and asia","author":"Shaheen","year":"2010","journal-title":"Transport. Res. Rec"},{"issue":"3","key":"10.1016\/j.engappai.2019.07.013_b46","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1145\/1754414.1754419","article-title":"Sensor faults : Detection methods and prevalence in real-world datasets","volume":"6","author":"Sharma","year":"2010","journal-title":"ACM. Trans. Sens. Netw."},{"key":"10.1016\/j.engappai.2019.07.013_b47","doi-asserted-by":"crossref","DOI":"10.1006\/jcss.1995.1013","article-title":"On the computational power of neural nets","author":"Siegelmann","year":"1995","journal-title":"J. Comput. Syst. Sci"},{"key":"10.1016\/j.engappai.2019.07.013_b48","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-662-08968-2_16","article-title":"The challenges of clustering high dimensional data","author":"Steinbach","year":"2004","journal-title":"New Dir. Stat. Phys"},{"key":"10.1016\/j.engappai.2019.07.013_b49","first-page":"1","article-title":"An intelligent fleet condition-based maintenance decision making method based on multi-agent","author":"Sun","year":"2013","journal-title":"Int. J. Progn. Health. Manag."},{"key":"10.1016\/j.engappai.2019.07.013_b50","series-title":"18th Europ. Mic. Pack. Conf","first-page":"1","article-title":"Data analysis techniques for real-time prognostics and health management of semiconductor devices","author":"Sutharssan","year":"2011"},{"key":"10.1016\/j.engappai.2019.07.013_b51","series-title":"Proceedings Tenth ICML","article-title":"Multi-agent reinforcement learning: Independent vs. Cooperative agents","author":"Tan","year":"1993"},{"issue":"3","key":"10.1016\/j.engappai.2019.07.013_b52","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1609\/aimag.v33i3.2426","article-title":"Multiagent learning: Basics, challenges, and prospects","volume":"33","author":"Tuyls","year":"2012","journal-title":"AI. Mag."},{"key":"10.1016\/j.engappai.2019.07.013_b53","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2017.03.027","article-title":"Distributed maintenance planning in manufacturing industries","author":"Upasani","year":"2017","journal-title":"Comput. Ind. Eng"},{"issue":"5","key":"10.1016\/j.engappai.2019.07.013_b54","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1007\/s10845-015-1066-0","article-title":"A new paradigm of cloud-based predictive maintenance for intelligent manufacturing","volume":"25","author":"Wang","year":"2017","journal-title":"J. Intell. Manuf."},{"key":"10.1016\/j.engappai.2019.07.013_b55","series-title":"Intelligent Agents: Theory and Practice","author":"Wooldridge","year":"1995"},{"key":"10.1016\/j.engappai.2019.07.013_b56","unstructured":"Wtte-rnn, 2016. https:\/\/github.com\/ragulpr\/wtte-rnn."},{"key":"10.1016\/j.engappai.2019.07.013_b57","doi-asserted-by":"crossref","unstructured":"Yu, L., Shrivastava, S., 2016. Distributed Real Time Compressor Blade Health Monitoring System, In: Proc. Annu. Conf. Progn. Health. Manag. Soc.","DOI":"10.36001\/phmconf.2016.v8i1.2498"},{"key":"10.1016\/j.engappai.2019.07.013_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2004.08.007","article-title":"Bus maintenance scheduling using multi-agent systems","author":"Zhou","year":"2004","journal-title":"Eng. Appl. Artif. Intell"},{"key":"10.1016\/j.engappai.2019.07.013_b59","series-title":"IECON Proceed. (Industrial Electronics Conference)","first-page":"2314","article-title":"Intelligent prediction monitoring system for predictive maintenance in manufacturing","author":"Zhou","year":"2005"},{"key":"10.1016\/j.engappai.2019.07.013_b60","series-title":"Chapter 8: Robot Cooperation and Swarm Intelligence","author":"Zoghby","year":"2014"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197619301770?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197619301770?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T12:54:00Z","timestamp":1721566440000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197619301770"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,10]]},"references-count":60,"alternative-id":["S0952197619301770"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2019.07.013","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2019,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An Industrial Multi Agent System for real-time distributed collaborative prognostics","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2019.07.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}