{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T07:57:10Z","timestamp":1742803030688},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,3,1]],"date-time":"2018-03-01T00:00:00Z","timestamp":1519862400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61371201","61773304","61771376","61772399"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Basic Research Program (973 Program) of China","award":["2013CB329402"]},{"name":"Natural Science Basic Research in Shaanxi Province of China","award":["2014JM2-1006"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2018,3]]},"DOI":"10.1016\/j.engappai.2017.11.008","type":"journal-article","created":{"date-parts":[[2017,12,20]],"date-time":"2017-12-20T06:58:52Z","timestamp":1513753132000},"page":"24-35","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":66,"special_numbering":"C","title":["Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints"],"prefix":"10.1016","volume":"69","author":[{"given":"Yang","family":"Meng","sequence":"first","affiliation":[]},{"given":"Ronghua","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Licheng","family":"Jiao","sequence":"additional","affiliation":[]},{"given":"Wenya","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shuyuan","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.engappai.2017.11.008_b1","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.neucom.2014.12.124","article-title":"Discriminative non-negative matrix factorization for dimensionality reduction","volume":"173","author":"Babaee","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2017.11.008_b2","first-page":"2399","article-title":"Manifold regularization: A geometric framework for learning from examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"10.1016\/j.engappai.2017.11.008_b3","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized non-negative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2017.11.008_b4","unstructured":"Cai, D., He, X., Wang, X., et al., 2009a. Locality preserving nonnegative matrix factorization. In: Proceedings of the International Joint Conference on Artificial Intelligence. pp. 1010\u20131015."},{"key":"10.1016\/j.engappai.2017.11.008_b5","doi-asserted-by":"crossref","unstructured":"Cai, D., Wang, X., He, X., et al., 2009b. Probabilistic dyadic data analysis with local and global consistency. In: International Conference on Machine Learning. pp. 105\u2013112.","DOI":"10.1145\/1553374.1553388"},{"key":"10.1016\/j.engappai.2017.11.008_b6","doi-asserted-by":"crossref","unstructured":"Ding, C., Li, T., Peng, W., et al., 2006. Orthogonal nonnegative matrix tri-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 126\u2013135.","DOI":"10.1145\/1150402.1150420"},{"key":"10.1016\/j.engappai.2017.11.008_b7","series-title":"Pattern Classification","author":"Duda","year":"2012"},{"key":"10.1016\/j.engappai.2017.11.008_b8","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.engappai.2016.02.016","article-title":"Label consistent semi-supervised non-negative matrix factorization for maintenance activities identification","volume":"52","author":"Feng","year":"2016","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"5","key":"10.1016\/j.engappai.2017.11.008_b9","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1109\/TNNLS.2016.2527796","article-title":"A robust regularization path algorithm for \u03bd-support vector classification","volume":"28","author":"Gu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.engappai.2017.11.008_b10","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TNNLS.2014.2342533","article-title":"Incremental support vector learning for ordinal regression","volume":"26","author":"Gu","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.engappai.2017.11.008_b11","doi-asserted-by":"crossref","first-page":"1646","DOI":"10.1109\/TNNLS.2016.2544779","article-title":"Structural minimax probability machine","volume":"28","author":"Gu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2017.11.008_b12","doi-asserted-by":"crossref","unstructured":"Gu, Q., Zhou, J., 2009. Co-clustering on manifolds. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.pp. 359\u2013368.","DOI":"10.1145\/1557019.1557063"},{"issue":"7","key":"10.1016\/j.engappai.2017.11.008_b13","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1109\/TPAMI.2015.2487982","article-title":"Joint image clustering and labeling by matrix factorization","volume":"38","author":"Hong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2017.11.008_b14","series-title":"Principal Component Analysis, Vol. 87","first-page":"41","author":"Jolliffe","year":"1986"},{"key":"10.1016\/j.engappai.2017.11.008_b15","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"10.1016\/j.engappai.2017.11.008_b16","first-page":"207","article-title":"Learning spatially localized, parts-based representation","author":"Li","year":"2001","journal-title":"Comput. Vis. Pattern Recognit."},{"key":"10.1016\/j.engappai.2017.11.008_b17","doi-asserted-by":"crossref","unstructured":"Li, Z., Yang, Y., Liu, J., et al., 2012. Unsupervised feature selection using nonnegative spectral analysis. In: National Conference on Artificial Intelligence. pp. 1026\u20131032.","DOI":"10.1609\/aaai.v26i1.8289"},{"issue":"7","key":"10.1016\/j.engappai.2017.11.008_b18","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TPAMI.2011.217","article-title":"Constrained nonnegative matrix factorization for image representation","volume":"34","author":"Liu","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2017.11.008_b19","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.engappai.2013.05.012","article-title":"A hybrid approach combining extreme learning machine and sparse representation for image classification","volume":"27","author":"Luo","year":"2014","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"6","key":"10.1016\/j.engappai.2017.11.008_b20","doi-asserted-by":"crossref","first-page":"1662","DOI":"10.1109\/TMM.2012.2199293","article-title":"Discriminating joint feature analysis for multimedia data understanding","volume":"14","author":"Ma","year":"2012","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.engappai.2017.11.008_b21","doi-asserted-by":"crossref","first-page":"488","DOI":"10.1016\/j.neucom.2016.05.020","article-title":"LED: A fast overlapping communities detection algorithm based on structural clustering","volume":"207","author":"Ma","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2017.11.008_b22","series-title":"Advances in Neural Information Processing Systems","first-page":"1813","article-title":"Efficient and robust feature selection via joint L2,1-norms minimization","author":"Nie","year":"2010"},{"issue":"2","key":"10.1016\/j.engappai.2017.11.008_b23","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/env.3170050203","article-title":"Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values","volume":"5","author":"Paatero","year":"1994","journal-title":"Environmetrics"},{"issue":"12","key":"10.1016\/j.engappai.2017.11.008_b24","doi-asserted-by":"crossref","first-page":"2191","DOI":"10.1109\/TNNLS.2014.2306844","article-title":"Learning regularized LDA by clustering","volume":"25","author":"Pang","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2017.11.008_b25","series-title":"Combinatorial Optimization: Algorithms and Complexity","author":"Papadimitriou","year":"1982"},{"key":"10.1016\/j.engappai.2017.11.008_b26","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.ipm.2004.11.005","article-title":"Document clustering using nonnegative matrix factorization","volume":"42","author":"Shahnaz","year":"2006","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.engappai.2017.11.008_b27","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.knosys.2016.09.006","article-title":"Subspace learning-based graph regularized feature selection","volume":"112","author":"Shang","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2017.11.008_b28","article-title":"Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection","author":"Shang","year":"2017","journal-title":"IEEE Trans. Cybern"},{"key":"10.1016\/j.engappai.2017.11.008_b29","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.patcog.2016.01.035","article-title":"Global discriminative-based nonnegative spectral clustering","volume":"55","author":"Shang","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.engappai.2017.11.008_b30","doi-asserted-by":"crossref","first-page":"1242","DOI":"10.1016\/j.neucom.2015.07.068","article-title":"Self-representation based dual-graph regularized feature selection clustering","volume":"171","author":"Shang","year":"2016","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.engappai.2017.11.008_b31","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TMM.2014.2375792","article-title":"Hessian semi-supervised sparse feature selection based on L2,1\u22152-matrix norm.","volume":"17","author":"Shi","year":"2015","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.engappai.2017.11.008_b32","first-page":"1505","article-title":"Regularized co-clustering with dual supervision","author":"Sindhwani","year":"2009","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.engappai.2017.11.008_b33","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.neucom.2015.01.103","article-title":"Graph regularized and sparse nonnegative matrix factorization with hard constraints for data representation","volume":"173","author":"Sun","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2017.11.008_b34","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.neucom.2017.01.064","article-title":"Cross-heterogeneous-database age estimation through correlation representation learning","volume":"238","author":"Tian","year":"2017","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.engappai.2017.11.008_b35","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1109\/TNNLS.2012.2197412","article-title":"L1\u22152 regularization: A thresholding representation theory and a fast solver","volume":"23","author":"Xu","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2017.11.008_b36","doi-asserted-by":"crossref","unstructured":"Xu, W., Liu, X., Gong, Y., 2003. Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 267\u2013273.","DOI":"10.1145\/860435.860485"},{"issue":"6","key":"10.1016\/j.engappai.2017.11.008_b37","doi-asserted-by":"crossref","first-page":"1159","DOI":"10.1007\/s11432-010-0090-0","article-title":"L1\u22152 regularization","volume":"53","author":"Xu","year":"2010","journal-title":"Sci. China Inf. Sci."},{"key":"10.1016\/j.engappai.2017.11.008_b38","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.engappai.2014.06.014","article-title":"A convex relaxation framework for a class of semi-supervised learning methods and its application in pattern recognition","volume":"35","author":"Yang","year":"2014","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"1","key":"10.1016\/j.engappai.2017.11.008_b39","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.engappai.2006.03.001","article-title":"Initialization enhancer for non-negative matrix factorization","volume":"20","author":"Zheng","year":"2007","journal-title":"Eng. Appl. Artif. Intell."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197617302932?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197617302932?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,8,10]],"date-time":"2022-08-10T18:24:47Z","timestamp":1660155887000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197617302932"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3]]},"references-count":39,"alternative-id":["S0952197617302932"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2017.11.008","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2018,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2017.11.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}