{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T08:31:58Z","timestamp":1726475518630},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"CONACYT","award":["372236"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2018,1]]},"DOI":"10.1016\/j.engappai.2017.10.007","type":"journal-article","created":{"date-parts":[[2017,11,6]],"date-time":"2017-11-06T03:01:05Z","timestamp":1509937265000},"page":"270-282","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Some features speak loud, but together they all speak louder: A study on the correlation between classification error and feature usage in decision-tree classification ensembles"],"prefix":"10.1016","volume":"67","author":[{"given":"B\u00e1rbara","family":"Cervantes","sequence":"first","affiliation":[]},{"given":"Ra\u00fal","family":"Monroy","sequence":"additional","affiliation":[]},{"given":"Miguel Angel","family":"Medina-P\u00e9rez","sequence":"additional","affiliation":[]},{"given":"Miguel","family":"Gonzalez-Mendoza","sequence":"additional","affiliation":[]},{"given":"Jose","family":"Ramirez-Marquez","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2\u20133","key":"10.1016\/j.engappai.2017.10.007_b1","first-page":"255","article-title":"KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"J. Multiple-Valued Logic Soft Comput."},{"issue":"2","key":"10.1016\/j.engappai.2017.10.007_b2","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.engappai.2017.10.007_b3","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.engappai.2017.10.007_b4","series-title":"Cartography from Pole to Pole","first-page":"303","article-title":"Landslide susceptibility mapping along the national road 32 of vietnam using gis-based j48 decision tree classifier and its ensembles","author":"Bui","year":"2014"},{"issue":"9","key":"10.1016\/j.engappai.2017.10.007_b5","doi-asserted-by":"crossref","first-page":"2036","DOI":"10.1109\/TIFS.2016.2571679","article-title":"Temporal and spatial locality, an abstraction for masquerade detection","volume":"11","author":"Cami\u00f1a","year":"2016","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.engappai.2017.10.007_b6","series-title":"Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I","first-page":"241","article-title":"Learning decision trees for unbalanced data","author":"Cieslak","year":"2008"},{"doi-asserted-by":"crossref","unstructured":"Cunningham, P., Carney, J., 2000. Diversity versus quality in classification ensembles based on feature selection, in: Proceedings of the 11th European Conference on Machine Learning. pp. 109\u2013116.","key":"10.1016\/j.engappai.2017.10.007_b7","DOI":"10.1007\/3-540-45164-1_12"},{"issue":"5","key":"10.1016\/j.engappai.2017.10.007_b8","doi-asserted-by":"crossref","first-page":"2253","DOI":"10.1021\/pr4001114","article-title":"Predicting tryptic cleavage from proteomics data using decision tree ensembles","volume":"12","author":"Fannes","year":"2013","journal-title":"J. Proteome Res."},{"issue":"3","key":"10.1016\/j.engappai.2017.10.007_b9","doi-asserted-by":"crossref","first-page":"285","DOI":"10.3233\/AIC-2011-0490","article-title":"Building cost-sensitive decision trees for medical applications","volume":"24","author":"Freitas","year":"2011","journal-title":"AI Commun."},{"key":"10.1016\/j.engappai.2017.10.007_b10","series-title":"European Conference on Computational Learning Theory","first-page":"23","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","author":"Freund","year":"1995"},{"key":"10.1016\/j.engappai.2017.10.007_b11","first-page":"148","article-title":"Experiments with a New Boosting Algorithm","author":"Freund","year":"1996","journal-title":"Int. Conf. Mach. Learn."},{"key":"10.1016\/j.engappai.2017.10.007_b12","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.neucom.2017.03.063","article-title":"Multi-train: a semi-supervised heterogeneous ensemble classifier","volume":"249","author":"Gu","year":"2017","journal-title":"Neurocomputing"},{"issue":"39","key":"10.1016\/j.engappai.2017.10.007_b13","first-page":"1186","article-title":"Feature Selection Mechanisms for Ensemble Creation: A Genetic Search Perspective","volume":"180","author":"Guerra-Salcedo","year":"2000","journal-title":"Dna"},{"issue":"8","key":"10.1016\/j.engappai.2017.10.007_b14","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/34.709601","article-title":"The random subspace method for constructing decision forests","volume":"20","author":"Ho","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.engappai.2017.10.007_b15","series-title":"Advances in Knowledge Discovery and Data Mining","first-page":"122","article-title":"Building decision trees for the multi-class imbalance problem","author":"Hoens","year":"2012"},{"issue":"4","key":"10.1016\/j.engappai.2017.10.007_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/ijdwm.2013100101","article-title":"Empirical investigation of decision tree ensembles for monitoring cardiac complications of diabetes","volume":"9","author":"Kelarev","year":"2013","journal-title":"Int. J. Data Warehousing Min."},{"issue":"8","key":"10.1016\/j.engappai.2017.10.007_b17","doi-asserted-by":"crossref","first-page":"646","DOI":"10.3390\/rs8080646","article-title":"Maximizing the diversity of ensemble random forests for tree genera classification using high density lidar data","volume":"8","author":"Ko","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.engappai.2017.10.007_b18","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.inffus.2017.02.004","article-title":"Ensemble learning for data stream analysis: A survey","volume":"37","author":"Krawczyk","year":"2017","journal-title":"Inf. Fusion"},{"issue":"12","key":"10.1016\/j.engappai.2017.10.007_b19","doi-asserted-by":"crossref","first-page":"3969","DOI":"10.1016\/j.patcog.2015.06.001","article-title":"On the usefulness of one-class classifier ensembles for decomposition of multi-class problems","volume":"48","author":"Krawczyk","year":"2015","journal-title":"Pattern Recognit."},{"issue":"Part C","key":"10.1016\/j.engappai.2017.10.007_b20","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1016\/j.asoc.2013.08.014","article-title":"Cost-sensitive decision tree ensembles for effective imbalanced classification","volume":"14","author":"Krawczyk","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2017.10.007_b21","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1016\/j.asoc.2013.08.014","article-title":"Cost-sensitive decision tree ensembles for effective imbalanced classification","volume":"14","author":"Krawczyk","year":"2014","journal-title":"Appl. Soft Comput."},{"year":"2014","author":"Kuncheva","series-title":"Combining Pattern Classifiers: Methods and Algorithms","key":"10.1016\/j.engappai.2017.10.007_b22"},{"issue":"2","key":"10.1016\/j.engappai.2017.10.007_b23","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1023\/A:1022859003006","article-title":"Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy","volume":"51","author":"Kuncheva","year":"2003","journal-title":"Mach. Learn."},{"year":"2013","author":"Lichman","series-title":"UCI Machine Learning Repository","key":"10.1016\/j.engappai.2017.10.007_b24"},{"key":"10.1016\/j.engappai.2017.10.007_b25","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.knosys.2016.10.018","article-title":"PBC4cip: A new contrast pattern-based classifier for class imbalance problems","volume":"115","author":"Loyola-Gonz\u00e1lez","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.engappai.2017.10.007_b26","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.ins.2016.09.040","article-title":"Effect of class imbalance on quality measures for contrast patterns: an experimental study","volume":"374","author":"Loyola-Gonz\u00e1lez","year":"2016","journal-title":"Inform. Sci."},{"issue":"2","key":"10.1016\/j.engappai.2017.10.007_b27","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1023\/A:1022604100933","article-title":"An empirical comparison of pruning methods for decision tree induction","volume":"4","author":"Mingers","year":"1989","journal-title":"Mach. Learn."},{"issue":"8","key":"10.1016\/j.engappai.2017.10.007_b28","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.1109\/TNNLS.2012.2199516","article-title":"Study on the impact of partition-induced dataset shift on k-fold cross-validation","volume":"23","author":"Moreno-Torres","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.engappai.2017.10.007_b29","article-title":"Bayesian posterior misclassification error risk distributions for ensemble classifiers","author":"Pendharkar","year":"2016","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"3","key":"10.1016\/j.engappai.2017.10.007_b30","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/S0020-7373(87)80053-6","article-title":"Simplifying decision trees","volume":"27","author":"Quinlan","year":"1987","journal-title":"Int. J. Man-Mach. Stud."},{"key":"10.1016\/j.engappai.2017.10.007_b31","article-title":"C45: Programs for machine learning. Morgan Kaufmann series in machine learning","author":"Quinlan","year":"2014","journal-title":"Elsevier Sci."},{"issue":"1","key":"10.1016\/j.engappai.2017.10.007_b32","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TSMCA.2009.2029559","article-title":"RUSBoost: A hybrid approach to alleviating class imbalance","volume":"40","author":"Seiffert","year":"2010","journal-title":"IIEEE Trans. Syst. Man Cybern. A"},{"key":"10.1016\/j.engappai.2017.10.007_b33","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.inffus.2015.07.003","article-title":"Diversity-aware classifier ensemble selection via f-score","volume":"28","author":"Visentini","year":"2016","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.engappai.2017.10.007_b34","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.inffus.2013.04.006","article-title":"A survey of multiple classifier systems as hybrid systems","volume":"16","author":"Wo\u017aniak","year":"2014","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.engappai.2017.10.007_b35","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.asoc.2017.03.016","article-title":"Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers","volume":"56","author":"Zhang","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.engappai.2017.10.007_b36","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2015.11.010","article-title":"Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features","volume":"95","author":"Zhou","year":"2016","journal-title":"Knowl.-Based Syst."}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197617302488?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0952197617302488?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,10,21]],"date-time":"2020-10-21T04:25:17Z","timestamp":1603254317000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0952197617302488"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1]]},"references-count":36,"alternative-id":["S0952197617302488"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2017.10.007","relation":{},"ISSN":["0952-1976"],"issn-type":[{"type":"print","value":"0952-1976"}],"subject":[],"published":{"date-parts":[[2018,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Some features speak loud, but together they all speak louder: A study on the correlation between classification error and feature usage in decision-tree classification ensembles","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2017.10.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}