{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T01:38:49Z","timestamp":1721785129810},"reference-count":25,"publisher":"Elsevier BV","issue":"9","content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Engineering Applications of Artificial Intelligence"],"published-print":{"date-parts":[[2013,10]]},"DOI":"10.1016\/j.engappai.2013.06.004","type":"journal-article","created":{"date-parts":[[2013,7,13]],"date-time":"2013-07-13T04:01:33Z","timestamp":1373688093000},"page":"2022-2027","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"title":["Self-Adjustable Neural Network for speech recognition"],"prefix":"10.1016","volume":"26","author":[{"given":"Hua-Nong","family":"Ting","sequence":"first","affiliation":[]},{"given":"Boon-Fei","family":"Yong","sequence":"additional","affiliation":[]},{"given":"Seyed Mostafa","family":"Mirhassani","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.engappai.2013.06.004_bib1","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1109\/72.298231","article-title":"How delays affect neural dynamics and learning","volume":"5","author":"Baldi","year":"1994","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.engappai.2013.06.004_bib2","doi-asserted-by":"crossref","first-page":"1164","DOI":"10.1016\/j.asoc.2006.01.012","article-title":"Modeling and prediction with a class of time delay dynamics neural networks","volume":"7","author":"Becerikli","year":"2007","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"10.1016\/j.engappai.2013.06.004_bib3","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/TASSP.1980.1163420","article-title":"Comparison of parametric representation for monosyllabic word recognition in continuously spoken sentences","volume":"28","author":"Davis","year":"1980","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"2","key":"10.1016\/j.engappai.2013.06.004_bib4","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1109\/72.207622","article-title":"Continuous time temporal back-propagation with adaptable time delays","volume":"4","author":"Day","year":"1993","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.engappai.2013.06.004_bib5","doi-asserted-by":"crossref","unstructured":"Ding, I.R., 2010. Enhancement of speech recognition using a variable-length frame overlapping method. In: International Symposium on Computer, Communication Control and Automation, pp. 375\u2013377.","DOI":"10.1109\/3CA.2010.5533800"},{"key":"10.1016\/j.engappai.2013.06.004_bib6","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.dsp.2008.07.010","article-title":"A low complexity time-scaling expansion algorithm of speech signals suitable for real time implication","volume":"19","author":"Duchen-Sanchez","year":"2009","journal-title":"Digital Signal Process."},{"key":"10.1016\/j.engappai.2013.06.004_bib7","doi-asserted-by":"crossref","first-page":"2360","DOI":"10.1016\/j.neucom.2006.03.005","article-title":"New fast time delay neural networks using cross correlation performed in the frequency domain","volume":"69","author":"El-Bakry","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2013.06.004_bib9","doi-asserted-by":"crossref","unstructured":"Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren, H.L., Zue, V., 1992. The DARPA TIMIT acoustic phonetic continuous speech corpus CDROM, NTIS order no. PB91-100354.","DOI":"10.6028\/NIST.IR.4930"},{"key":"10.1016\/j.engappai.2013.06.004_bib10","doi-asserted-by":"crossref","first-page":"2857","DOI":"10.1016\/j.neucom.2008.06.030","article-title":"Identification and control of nonlinear systems by a time-delay recurrent neural network","volume":"72","author":"Ge","year":"2009","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.engappai.2013.06.004_bib11","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1109\/72.80233","article-title":"A novel objective function for improved phoneme recognition using time delay neural networks","volume":"1","author":"Hempshire","year":"1990","journal-title":"IEEE Trans. Neural Networks"},{"issue":"4","key":"10.1016\/j.engappai.2013.06.004_bib12","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1121\/1.399423","article-title":"Perceptual linear predictive (PLP) analysis of speech","volume":"87","author":"Hermansky","year":"1990","journal-title":"J. Acoust. Soc. Am."},{"key":"10.1016\/j.engappai.2013.06.004_bib13","unstructured":"Hermansky, H., Ellis, D.P.W., Sharma, S., 2000. Tandem connectionist feature extraction for conventional HMM systems. In: International Conferences on Acoustics, Speech and Signal Processing, pp. 1635\u20131638."},{"key":"10.1016\/j.engappai.2013.06.004_bib14","doi-asserted-by":"crossref","unstructured":"Makhoul, J., 1975. Linear prediction: a tutorial review. In: IEEE Proceedings 63, pp. 561\u2013580.","DOI":"10.1109\/PROC.1975.9792"},{"key":"10.1016\/j.engappai.2013.06.004_bib16","doi-asserted-by":"crossref","first-page":"2965","DOI":"10.1016\/j.patcog.2008.05.008","article-title":"Automatic speech recognition: history, methods and challenges","volume":"41","author":"O'Shaughnessy","year":"2008","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.engappai.2013.06.004_bib17","series-title":"Practical Approaches to Speech Coding","author":"Papamichalis","year":"1987"},{"issue":"2","key":"10.1016\/j.engappai.2013.06.004_bib18","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/0167-6393(96)00033-7","article-title":"Modeling of phone duration (using TIMIT database) and its potential benefits to ASR","volume":"19","author":"Pols","year":"1996","journal-title":"Speech Commun."},{"key":"10.1016\/j.engappai.2013.06.004_bib19","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/S0167-6393(97)00013-7","article-title":"Large vocabulary Mandarin final recognition based on two-level time-delay neural networks","volume":"22","author":"Poo","year":"1997","journal-title":"Speech Commun."},{"key":"10.1016\/j.engappai.2013.06.004_bib20","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.specom.2007.01.012","article-title":"Using asymmetric windows in automatic speech recognition","volume":"49","author":"Rozman","year":"2007","journal-title":"Speech Commun."},{"key":"10.1016\/j.engappai.2013.06.004_bib22","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/S0925-2312(00)00308-8","article-title":"A survey of hybrid ANN\/HMM models for automatic speech recognition","volume":"37","author":"Trentin","year":"2001","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2013.06.004_bib23","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1016\/j.specom.2006.04.002","article-title":"On variable scale piecewise stationary spectral analysis of speech signals for ASR","volume":"4","author":"Tyagi","year":"2006","journal-title":"Speech Commun."},{"issue":"1","key":"10.1016\/j.engappai.2013.06.004_bib24","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/29.21701","article-title":"Phoneme recognition using time delay neural networks","volume":"37","author":"Waibel","year":"1989","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"key":"10.1016\/j.engappai.2013.06.004_bib25","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1109\/TASSP.1978.1163093","article-title":"A generalized hamming window","volume":"26","author":"Webster","year":"1978","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"2","key":"10.1016\/j.engappai.2013.06.004_bib26","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/0893-6080(94)00069-X","article-title":"Speed invariant speech recognition using variable velocity delay lines","volume":"8","author":"Yamauchi","year":"1995","journal-title":"Neural Networks"},{"key":"10.1016\/j.engappai.2013.06.004_bib27","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/S0925-2312(01)00589-6","article-title":"Ad aptive time delay neural network structures for nonlinear system identification","volume":"47","author":"Yazdizadeh","year":"2002","journal-title":"Neurocomputing"},{"key":"10.1016\/j.engappai.2013.06.004_bib28","series-title":"The HTK Book (for version HTK 3.4)","author":"Young","year":"2006"}],"container-title":["Engineering Applications of Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219761300105X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095219761300105X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,7,18]],"date-time":"2019-07-18T04:03:32Z","timestamp":1563422612000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095219761300105X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,10]]},"references-count":25,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2013,10]]}},"alternative-id":["S095219761300105X"],"URL":"https:\/\/doi.org\/10.1016\/j.engappai.2013.06.004","relation":{},"ISSN":["0952-1976"],"issn-type":[{"value":"0952-1976","type":"print"}],"subject":[],"published":{"date-parts":[[2013,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Self-Adjustable Neural Network for speech recognition","name":"articletitle","label":"Article Title"},{"value":"Engineering Applications of Artificial Intelligence","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.engappai.2013.06.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}