{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:50:30Z","timestamp":1726253430209},"reference-count":52,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["European Journal of Operational Research"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1016\/j.ejor.2019.01.040","type":"journal-article","created":{"date-parts":[[2019,1,19]],"date-time":"2019-01-19T06:47:11Z","timestamp":1547880431000},"page":"770-780","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":164,"title":["Bitcoin price forecasting with neuro-fuzzy techniques"],"prefix":"10.1016","volume":"276","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2515-2823","authenticated-orcid":false,"given":"George S.","family":"Atsalakis","sequence":"first","affiliation":[]},{"given":"Ioanna G.","family":"Atsalaki","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1098-8684","authenticated-orcid":false,"given":"Fotios","family":"Pasiouras","sequence":"additional","affiliation":[]},{"given":"Constantin","family":"Zopounidis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ejor.2019.01.040_bib0001","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.asoc.2016.02.029","article-title":"Using computational intelligent to forecast carbon prices","volume":"43","author":"Atsalakis","year":"2016","journal-title":"Journal of Applied Soft Computing"},{"key":"10.1016\/j.ejor.2019.01.040_bib0002","doi-asserted-by":"crossref","first-page":"10696","DOI":"10.1016\/j.eswa.2009.02.043","article-title":"Forecasting stock Market short-term trends using a neuro-fuzzy based methodology","volume":"36","author":"Atsalakis","year":"2009","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.ejor.2019.01.040_bib0003","doi-asserted-by":"crossref","first-page":"9196","DOI":"10.1016\/j.eswa.2011.01.068","article-title":"Elliot wave theory and neuro-fuzzy systems, in stock market prediction. The W.A.S.P. system","volume":"38","author":"Atsalakis","year":"2011","journal-title":"Expert System with Application"},{"key":"10.1016\/j.ejor.2019.01.040_bib0004","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s12667-015-0154-8","article-title":"Commodities\u2019 price trend forecasting by a neuro-fuzzy controller","volume":"7","author":"Atsalakis","year":"2016","journal-title":"Energy Systems"},{"key":"10.1016\/j.ejor.2019.01.040_bib0005","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1016\/j.cie.2011.06.019","article-title":"A flexible neural network-fuzzy mathematical programming algorithm for improvement of oil price estimation and forecasting","volume":"62","author":"Azadeh","year":"2012","journal-title":"Computers and Industrial Engineering"},{"key":"10.1016\/j.ejor.2019.01.040_bib0006","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.econmod.2017.03.019","article-title":"Can volume predict Bitcoin returns and volatility? A quantiles-based approach","volume":"64","author":"Balcilar","year":"2017","journal-title":"Economic Modelling"},{"key":"10.1016\/j.ejor.2019.01.040_bib0007","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.intfin.2017.12.004","article-title":"Bitcoin: Medium of exchange or speculative assets?","volume":"54","author":"Baur","year":"2018","journal-title":"Journal of International Financial Markets, Institutions & Money"},{"key":"10.1016\/j.ejor.2019.01.040_bib0008","doi-asserted-by":"crossref","first-page":"B141","DOI":"10.1287\/mnsc.17.4.B141","article-title":"Decision \u2013 Making in a fuzzy environment","volume":"17","author":"Bellman","year":"1970","journal-title":"Management Science"},{"key":"10.1016\/j.ejor.2019.01.040_bib0009","first-page":"5063","article-title":"Bitcoin for energy commodities before and after the December 2013 crash: Diversifier, hedge or safe haven?","volume":"49","author":"Bouri","year":"2017","journal-title":"Applied Economics"},{"key":"10.1016\/j.ejor.2019.01.040_bib0010","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.resourpol.2018.03.008","article-title":"Testing for asymmetric nonlinear short- and long-run relationships between Bitcoin, aggregate commodity and gold prices","volume":"57","author":"Bouri","year":"2018","journal-title":"Resources Policy"},{"key":"10.1016\/j.ejor.2019.01.040_bib0011","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.frl.2017.02.009","article-title":"Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions","volume":"23","author":"Bouri","year":"2017","journal-title":"Finance Research Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.frl.2018.07.005","article-title":"Co-explosivity in the cryptocurrency market","author":"Bouri","year":"2019","journal-title":"Finance Research Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0013","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1057\/jam.2015.5","article-title":"Virtual currency, tangible return: Portfolio diversification with Bitcoin","volume":"16","author":"Bri\u00e8re","year":"2015","journal-title":"Journal of Asset Management"},{"key":"10.1016\/j.ejor.2019.01.040_bib0015","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.econlet.2015.02.029","article-title":"Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin","volume":"130","author":"Cheah","year":"2015","journal-title":"Economics Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0016","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.frl.2018.01.005","article-title":"Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation","volume":"26","author":"Demir","year":"2018","journal-title":"Finance Research Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0017","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1086\/294743","article-title":"The behavior of stock market prices","volume":"38","author":"Fama","year":"1965","journal-title":"Journal of Business"},{"key":"10.1016\/j.ejor.2019.01.040_bib0018","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.frl.2017.11.009","article-title":"Informed trading in the Bitcoin market","volume":"26","author":"Feng","year":"2018","journal-title":"Finance Research Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0019","series-title":"Neural network learning and expert systems","author":"Gallant","year":"1993"},{"key":"10.1016\/j.ejor.2019.01.040_bib0020","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.jmoneco.2017.12.004","article-title":"Price manipulation in the Bitcoin ecosystem","volume":"95","author":"Gandal","year":"2018","journal-title":"Journal of Monetary Economics"},{"key":"10.1016\/j.ejor.2019.01.040_bib0021","doi-asserted-by":"crossref","unstructured":"Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., & Giaglis, G. (2015). Using time-series and sentiment analysis to detect the determinants of Bitcoin prices. Available at 10.2139\/ssrn.2607167.","DOI":"10.2139\/ssrn.2607167"},{"key":"10.1016\/j.ejor.2019.01.040_bib0022","author":"Greaves"},{"key":"10.1016\/j.ejor.2019.01.040_sbref0022","series-title":"Forecasting the world gold price using optimized neuro-fuzzy with genetic algorithm (Ga-Anfis) and smooth transition regression with long memory (Fi-Star) modelling","author":"Habibnia","year":"2010"},{"key":"10.1016\/j.ejor.2019.01.040_bib0024","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/72.329697","article-title":"Training feed forward networks with the Marquardt algorithm","volume":"5","author":"Hagan","year":"1994","journal-title":"IEEE Transactions Neural Networks"},{"key":"10.1016\/j.ejor.2019.01.040_bib0025","doi-asserted-by":"crossref","first-page":"1308","DOI":"10.1016\/j.tele.2016.05.005","article-title":"Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing Bitcoin","volume":"34","author":"Hayes","year":"2017","journal-title":"Telematics and Informatics"},{"key":"10.1016\/j.ejor.2019.01.040_bib0026","series-title":"Neural networks: A comprehensive foundation","author":"Haykin","year":"1994"},{"key":"10.1016\/j.ejor.2019.01.040_bib0027","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.jebo.2017.07.001","article-title":"Banning Bitcoin","volume":"141","author":"Hendrickson","year":"2017","journal-title":"Journal of Economic Behavior & Organization"},{"key":"10.1016\/j.ejor.2019.01.040_bib0028","series-title":"Transforming worldviews: An anthropological understanding of how people change","author":"Hiebert","year":"2008"},{"key":"10.1016\/j.ejor.2019.01.040_bib0029","series-title":"Neuro-fuzzy and soft computing. A computational approach to learning and machine intelligence","year":"1997"},{"key":"10.1016\/j.ejor.2019.01.040_bib0030","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","article-title":"ANFIS: Adaptive-network-based fuzzy inference systems","volume":"23","author":"Jang","year":"1993","journal-title":"IEEE Trans-actions on Systems, Man, and Cybernetics"},{"key":"10.1016\/j.ejor.2019.01.040_bib0031","series-title":"Springer handbook of computational intelligence (Part D and G)","year":"2015"},{"key":"10.1016\/j.ejor.2019.01.040_bib0032","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.frl.2017.07.014","article-title":"On the transaction cost of Bitcoin","volume":"23","author":"Kim","year":"2017","journal-title":"Finance Research Letters"},{"issue":"4","key":"10.1016\/j.ejor.2019.01.040_bib0033","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0123923","article-title":"What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis","volume":"10","author":"Kristoufek","year":"2015","journal-title":"PLoS ONE"},{"key":"10.1016\/j.ejor.2019.01.040_sbref0033","series-title":"Automated Bitcoin trading via machine learning algorithms","author":"Madan","year":"2015"},{"key":"10.1016\/j.ejor.2019.01.040_bib0035","doi-asserted-by":"crossref","unstructured":"Makrichoriti, P., & Moratis, G. (2016). BitCoin's roller coaster: systemic risk and market sentiment. Available at SSRN: 10.2139\/ssrn.2808096.","DOI":"10.2139\/ssrn.2808096"},{"key":"10.1016\/j.ejor.2019.01.040_bib0036","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0020-7373(75)80002-2","article-title":"An experiment in linguistic synthesis with a fuzzy logic controller","volume":"7","author":"Mamdani","year":"1975","journal-title":"International Journal of Man-Machine Studies"},{"key":"10.1016\/j.ejor.2019.01.040_bib0037","doi-asserted-by":"crossref","first-page":"2664","DOI":"10.1016\/j.asoc.2010.10.015","article-title":"A novel hybridization of artificial neural networks and ARIMA models for time series forecasting","volume":"11","author":"Mehdi","year":"2011","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.ejor.2019.01.040_bib0038","series-title":"Neural networks for modelling and control dynamic systems","author":"Norgaard","year":"2003"},{"key":"10.1016\/j.ejor.2019.01.040_bib0039","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1080\/10864415.2016.1061413","article-title":"Price fluctuations and the use of Bitcoin: An empirical inquiry","volume":"20","author":"Polasik","year":"2015","journal-title":"International Journal of Electronic Commerce"},{"key":"10.1016\/j.ejor.2019.01.040_bib0040","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/S0888-613X(01)00068-8","article-title":"A two-stage approach to self-learning direct fuzzy controllers","volume":"29","author":"Pomares","year":"2002","journal-title":"International Journal of Approximate Reasoning"},{"key":"10.1016\/j.ejor.2019.01.040_bib0041","series-title":"Fuzzy Logic with Engineering Applications","author":"Ross","year":"1995"},{"key":"10.1016\/j.ejor.2019.01.040_bib0042","series-title":"Fuzzy if-then rules in computational intelligence","year":"2000"},{"key":"10.1016\/j.ejor.2019.01.040_bib0043","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.eswa.2017.01.049","article-title":"Improving stock index forecasts by using a new weighted fuzzy-trend time series method","volume":"76","author":"Rubio","year":"2017","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.ejor.2019.01.040_sbref0042","series-title":"Bayesian regression and Bitcoin","author":"Shah","year":"2014"},{"key":"10.1016\/j.ejor.2019.01.040_bib0045","series-title":"Industrial applications of fuzzy control","author":"Sugeno","year":"1985"},{"key":"10.1016\/j.ejor.2019.01.040_bib0046","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.ijar.2015.12.011","article-title":"Stock market forecasting by using a hybrid model of exponential fuzzy time series","volume":"70","author":"Talarposhti","year":"2016","journal-title":"International Journal of Approximate Reasoning"},{"key":"10.1016\/j.ejor.2019.01.040_bib0047","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1016\/j.neunet.2005.06.003","article-title":"A comparative study of autoregressive neural network hybrids","volume":"18","author":"Taskaya","year":"2005","journal-title":"Neural Networks"},{"key":"10.1016\/j.ejor.2019.01.040_bib0048","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.econlet.2017.12.006","article-title":"Informational efficiency of Bitcoin \u2013 An extension","volume":"163","author":"Tiwari","year":"2018","journal-title":"Economics Letters"},{"key":"10.1016\/j.ejor.2019.01.040_bib0049","doi-asserted-by":"crossref","first-page":"2523","DOI":"10.1016\/j.cor.2004.06.024","article-title":"A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates","volume":"32","author":"Yu","year":"2005","journal-title":"Computers and Operations Research"},{"key":"10.1016\/j.ejor.2019.01.040_bib0050","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/S0019-9958(65)90241-X","article-title":"Fuzzy sets","volume":"8","author":"Zadeh","year":"1965","journal-title":"Information and Control"},{"key":"10.1016\/j.ejor.2019.01.040_bib0051","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1016\/j.omega.2012.06.005","article-title":"Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology","volume":"41","author":"Zhu","year":"2013","journal-title":"Omega"},{"key":"10.1016\/j.ejor.2019.01.040_bib0052","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/s40854-017-0054-0","article-title":"Analysis on the influence factors of Bitcoin's price based on VEC model","volume":"3","author":"Zhu","year":"2017","journal-title":"Financial Innovation"},{"key":"10.1016\/j.ejor.2019.01.040_bib0053","series-title":"Fuzzy set theory and its applications","author":"Zimmerman","year":"1991"}],"container-title":["European Journal of Operational Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037722171930075X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037722171930075X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,14]],"date-time":"2019-11-14T20:16:55Z","timestamp":1573762615000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S037722171930075X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":52,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,7]]}},"alternative-id":["S037722171930075X"],"URL":"https:\/\/doi.org\/10.1016\/j.ejor.2019.01.040","relation":{},"ISSN":["0377-2217"],"issn-type":[{"value":"0377-2217","type":"print"}],"subject":[],"published":{"date-parts":[[2019,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bitcoin price forecasting with neuro-fuzzy techniques","name":"articletitle","label":"Article Title"},{"value":"European Journal of Operational Research","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ejor.2019.01.040","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}