{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T07:12:20Z","timestamp":1724915540948},"reference-count":61,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2015,6,1]],"date-time":"2015-06-01T00:00:00Z","timestamp":1433116800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["European Journal of Operational Research"],"published-print":{"date-parts":[[2015,6]]},"DOI":"10.1016\/j.ejor.2014.04.011","type":"journal-article","created":{"date-parts":[[2014,4,18]],"date-time":"2014-04-18T14:16:09Z","timestamp":1397830569000},"page":"347-361","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"title":["GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models"],"prefix":"10.1016","volume":"243","author":[{"given":"Miha","family":"Mlakar","sequence":"first","affiliation":[]},{"given":"Dejan","family":"Petelin","sequence":"additional","affiliation":[]},{"given":"Tea","family":"Tu\u0161ar","sequence":"additional","affiliation":[]},{"given":"Bogdan","family":"Filipi\u010d","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ejor.2014.04.011_b0005","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1016\/j.isatra.2007.04.001","article-title":"Application of Gaussian processes for black-box modelling of biosystems","volume":"46","author":"A\u017eman","year":"2007","journal-title":"ISA Transactions"},{"issue":"2","key":"10.1016\/j.ejor.2014.04.011_b0010","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1109\/TSMCC.2004.841905","article-title":"Multiobjective GA optimization using reduced models","volume":"35","author":"Chafekar","year":"2005","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications"},{"key":"10.1016\/j.ejor.2014.04.011_b0015","series-title":"Statistics for spatial data","author":"Cressie","year":"1993"},{"key":"10.1016\/j.ejor.2014.04.011_b0020","series-title":"Multi-objective optimization using evolutionary algorithms","author":"Deb","year":"2001"},{"key":"10.1016\/j.ejor.2014.04.011_b0025","series-title":"Evolutionary computation in dynamic and uncertain environments","first-page":"297","article-title":"An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks","volume":"Vol. 51","author":"Deb","year":"2007"},{"issue":"2","key":"10.1016\/j.ejor.2014.04.011_b0030","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0035","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1111\/j.1540-8167.2007.00978.x","article-title":"Computer-simulated alternative modes of U-wave genesis","volume":"19","author":"Depolli","year":"2008","journal-title":"Journal of Cardiovascular Electrophysiology"},{"key":"10.1016\/j.ejor.2014.04.011_b0040","unstructured":"Emmerich, M. (2005). Single-and multi-objective evolutionary design optimization assisted by Gaussian random field metamodels. PhD thesis, University of Dortmund."},{"key":"10.1016\/j.ejor.2014.04.011_b0045","doi-asserted-by":"crossref","unstructured":"Emmerich, M. T., Deutz, A., & Klinkenberg, J. (2011). Hypervolume-based expected improvement: Monotonicity properties and exact computation. In 2011 IEEE congress on evolutionary computation (CEC) (pp. 2147\u20132154). Piscataway: IEEE.","DOI":"10.1109\/CEC.2011.5949880"},{"issue":"4","key":"10.1016\/j.ejor.2014.04.011_b0050","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1109\/TEVC.2005.859463","article-title":"Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels","volume":"10","author":"Emmerich","year":"2006","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"10.1016\/j.ejor.2014.04.011_b0055","series-title":"Parallel problem solving from nature \u2013 PPSN VII","first-page":"361","article-title":"Metamodel-assisted evolution strategies","volume":"Vol. 2439","author":"Emmerich","year":"2002"},{"key":"10.1016\/j.ejor.2014.04.011_b0060","doi-asserted-by":"crossref","unstructured":"Emmerich, M., & Naujoks, B. (2004a). Metamodel-assisted multiobjective optimization with implicit constraints and its application in airfoil design. In International conference and advanced course ERCOFTAC, Athens, Greece. Athens: National Technical University of Athens.","DOI":"10.1007\/978-0-85729-338-1_21"},{"key":"10.1016\/j.ejor.2014.04.011_b0065","series-title":"Adaptive computing in design and manufacture VI","first-page":"249","article-title":"Metamodel assisted multiobjective optimisation strategies and their application in airfoil design","author":"Emmerich","year":"2004"},{"key":"10.1016\/j.ejor.2014.04.011_b0070","first-page":"651","article-title":"Ozone prediction based on neural networks and Gaussian processes","volume":"29","author":"Gra\u0161i\u010d","year":"2006","journal-title":"Nuovo Cimento C"},{"issue":"3","key":"10.1016\/j.ejor.2014.04.011_b0075","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/BF01743506","article-title":"Optimal sizing, geometrical and topological design using a genetic algorithm","volume":"6","author":"Grierson","year":"1993","journal-title":"Structural Optimization"},{"key":"10.1016\/j.ejor.2014.04.011_b0080","unstructured":"Gunter, R. (2001). A partial order approach to noisy fitness functions. In 2001 IEEE Congress on Evolutionary Computation (CEC) (Vol. 1, pp. 318\u2013325). Piscataway: IEEE."},{"issue":"8","key":"10.1016\/j.ejor.2014.04.011_b0085","doi-asserted-by":"crossref","first-page":"1905","DOI":"10.1029\/JB076i008p01905","article-title":"Multiquadric equations of topography and other irregular surfaces","volume":"76","author":"Hardy","year":"1971","journal-title":"Journal of Geophysical Research"},{"key":"10.1016\/j.ejor.2014.04.011_b0090","series-title":"Evolutionary multi-criterion optimization \u2013 EMO 2005","first-page":"280","article-title":"A scalable multi-objective test problem toolkit","volume":"Vol. 3410","author":"Huband","year":"2005"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0095","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00500-003-0328-5","article-title":"A comprehensive survey of fitness approximation in evolutionary computation","volume":"9","author":"Jin","year":"2003","journal-title":"Soft Computing"},{"key":"10.1016\/j.ejor.2014.04.011_b0100","unstructured":"Jin, Y., Olhofer, M., & Sendhoff, B. (2001). Managing approximate models in evolutionary aerodynamic design optimization. In 2001 IEEE congress on evolutionary computation (CEC) (Vol. 1, pp. 592\u2013599). Piscataway: IEEE."},{"issue":"4","key":"10.1016\/j.ejor.2014.04.011_b0105","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1023\/A:1008306431147","article-title":"Efficient global optimization of expensive black-box functions","volume":"13","author":"Jones","year":"1998","journal-title":"Journal of Global Optimization"},{"issue":"18","key":"10.1016\/j.ejor.2014.04.011_b0110","doi-asserted-by":"crossref","first-page":"6121","DOI":"10.1016\/j.watres.2012.08.035","article-title":"Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states","volume":"46","author":"Ju\u017eni\u010d-Zonta","year":"2012","journal-title":"Water Research"},{"issue":"8","key":"10.1016\/j.ejor.2014.04.011_b0115","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1057\/palgrave.jors.2601747","article-title":"Application-driven sequential designs for simulation experiments: Kriging metamodelling","volume":"55","author":"Kleijnen","year":"2004","journal-title":"Journal of the Operational Research Society"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0120","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TEVC.2005.851274","article-title":"ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems","volume":"10","author":"Knowles","year":"2006","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"10.1016\/j.ejor.2014.04.011_b0125","first-page":"3","article-title":"Interpolation und extrapolation von station\u00e4ren zuf\u00e4lligen folgen","volume":"5","author":"Kolmogorov","year":"1941","journal-title":"Bulletin Academy Science USSR Series in Mathematics"},{"issue":"6","key":"10.1016\/j.ejor.2014.04.011_b0130","first-page":"119","article-title":"A statistical approach to some basic mine valuation problems on the Witwatersrand","volume":"52","author":"Krige","year":"1951","journal-title":"Journal of the Chemical, Metallurgical and Mining Society of South Africa"},{"issue":"3","key":"10.1016\/j.ejor.2014.04.011_b0135","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.compchemeng.2006.05.011","article-title":"Predictive control of a gas\u2013liquid separation plant based on a Gaussian process model","volume":"31","author":"Likar","year":"2007","journal-title":"Computers and Chemical Engineering"},{"issue":"5","key":"10.1016\/j.ejor.2014.04.011_b0140","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1007\/s00158-008-0251-6","article-title":"Improving multi-objective genetic algorithms with adaptive design of experiments and online metamodeling","volume":"37","author":"Li","year":"2009","journal-title":"Structural and Multidisciplinary Optimization"},{"key":"10.1016\/j.ejor.2014.04.011_b0145","series-title":"Evolutionary multi-criterion optimization \u2013 EMO 2005","first-page":"413","article-title":"Multi-objective optimization of problems with epistemic uncertainty","volume":"Vol. 3410","author":"Limbourg","year":"2005"},{"key":"10.1016\/j.ejor.2014.04.011_b0150","unstructured":"Limbourg, P., & Aponte, D. (2005). An optimization algorithm for imprecise multi-objective problem functions. In 2005 IEEE congress on evolutionary computation (CEC): Vol. 1 (pp. 459\u2013466). Piscataway: IEEE."},{"key":"10.1016\/j.ejor.2014.04.011_b0155","series-title":"Neural networks and machine learning","first-page":"133","article-title":"Introduction to Gaussian processes","author":"MacKay","year":"1998"},{"key":"10.1016\/j.ejor.2014.04.011_b0160","doi-asserted-by":"crossref","first-page":"439","DOI":"10.2307\/1425829","article-title":"The intrinsic random functions and their applications","volume":"5","author":"Matheron","year":"1973","journal-title":"Advances in Applied Probability"},{"key":"10.1016\/j.ejor.2014.04.011_b0165","first-page":"117","article-title":"The application of bayesian methods for seeking the extremum","author":"Mockus","year":"1978"},{"key":"10.1016\/j.ejor.2014.04.011_b0170","series-title":"Response surface methodology: Process and product optimization using designed experiments","author":"Myers","year":"1995"},{"key":"10.1016\/j.ejor.2014.04.011_b0175","series-title":"Lecture notes in statistics 118","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-0745-0","article-title":"Bayesian learning for neural networks","author":"Neal","year":"1996"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1978.tb01643.x","article-title":"Curve fitting and optimal design for prediction (with discussion)","volume":"40","author":"O\u2019Hagan","year":"1978","journal-title":"Journal of the Royal Statistical Society Series B"},{"key":"10.1016\/j.ejor.2014.04.011_b0185","doi-asserted-by":"crossref","unstructured":"Pilat, M., & Neruda, R. (2011). ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. In 2011 IEEE congress on evolutionary computation (CEC) (pp. 1202\u20131208). Piscataway: IEEE.","DOI":"10.1109\/CEC.2011.5949753"},{"key":"10.1016\/j.ejor.2014.04.011_b0190","doi-asserted-by":"crossref","unstructured":"Pilat, M., & Neruda, R. (2012). An evolutionary strategy for surrogate-based multiobjective optimization. In 2012 IEEE congress on evolutionary computation (CEC) (pp. 1\u20137). Piscataway: IEEE.","DOI":"10.1109\/CEC.2012.6256450"},{"issue":"4","key":"10.1016\/j.ejor.2014.04.011_b0195","first-page":"18","article-title":"Differential evolution \u2013 A simple evolution strategy for fast optimization","volume":"22","author":"Price","year":"1997","journal-title":"Dr. Dobb\u2019s Journal"},{"key":"10.1016\/j.ejor.2014.04.011_b0200","doi-asserted-by":"crossref","unstructured":"Quinonero-Candela, J., Rasmussen, C. E., & Williams, C. K. I. (2007). Approximation methods for Gaussian process regression. Tech. rep. MSR-TR-2007-124, Microsoft Research.","DOI":"10.7551\/mitpress\/7496.003.0011"},{"key":"10.1016\/j.ejor.2014.04.011_b0205","first-page":"1939","article-title":"A unifying view of sparse approximate Gaussian process regression","volume":"6","author":"Quinonero-Candela","year":"2005","journal-title":"The Journal of Machine Learning Research"},{"key":"10.1016\/j.ejor.2014.04.011_b0210","series-title":"Gaussian processes for machine learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.ejor.2014.04.011_b0215","first-page":"83","article-title":"In search for an efficient parameter tuning method for steel casting","author":"Robi\u010d","year":"2004"},{"key":"10.1016\/j.ejor.2014.04.011_b0220","series-title":"Evolutionary multi-criterion optimization \u2013 EMO 2005","first-page":"520","article-title":"DEMO: Differential evolution for multiobjective optimization","volume":"Vol. 3410","author":"Robi\u010d","year":"2005"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0225","doi-asserted-by":"crossref","first-page":"59","DOI":"10.2307\/2685263","article-title":"Thirteen ways to look at the correlation coefficient","volume":"42","author":"Rodgers","year":"1988","journal-title":"The American Statistician"},{"issue":"4","key":"10.1016\/j.ejor.2014.04.011_b0230","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1214\/ss\/1177012413","article-title":"Design and analysis of computer experiments","volume":"4","author":"Sacks","year":"1989","journal-title":"Statistical Science"},{"issue":"2","key":"10.1016\/j.ejor.2014.04.011_b0235","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1142\/S0129065704001899","article-title":"Gaussian processes for machine learning","volume":"14","author":"Seeger","year":"2004","journal-title":"International Journal of Neural Systems"},{"key":"10.1016\/j.ejor.2014.04.011_b0240","series-title":"Advances in neural information processing systems 18","first-page":"1257","article-title":"Sparse Gaussian processes using pseudo-inputs","author":"Snelson","year":"2006"},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0245","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","article-title":"Probabilistic neural networks","volume":"3","author":"Specht","year":"1990","journal-title":"Neural Networks"},{"key":"10.1016\/j.ejor.2014.04.011_b0250","series-title":"Interpolation of spatial data: Some theory for kriging","author":"Stein","year":"1999"},{"issue":"3","key":"10.1016\/j.ejor.2014.04.011_b0255","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.ress.2006.04.014","article-title":"Practical solutions for multi-objective optimization: An application to system reliability design problems","volume":"92","author":"Taboada","year":"2007","journal-title":"Reliability Engineering and System Safety"},{"issue":"1\u20134","key":"10.1016\/j.ejor.2014.04.011_b0260","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1179\/136404609X368064","article-title":"Simulation of continuous casting of steel by a meshless technique","volume":"22","author":"Vertnik","year":"2009","journal-title":"International Journal of Cast Metals Research"},{"key":"10.1016\/j.ejor.2014.04.011_b0265","first-page":"1","article-title":"Efficient global optimization algorithm assisted by multiple surrogate techniques","author":"Viana","year":"2012","journal-title":"Journal of Global Optimization"},{"key":"10.1016\/j.ejor.2014.04.011_b0270","series-title":"Parallel problem solving from nature \u2013 PPSN XI","first-page":"260","article-title":"New uncertainty handling strategies in multi-objective evolutionary optimization","volume":"Vol. 6239","author":"Vo\u00df","year":"2010"},{"key":"10.1016\/j.ejor.2014.04.011_b0275","series-title":"Parallel problem solving from nature \u2013 PPSN XI","first-page":"718","article-title":"On expected-improvement criteria for model-based multi-objective optimization","volume":"Vol. 6238","author":"Wagner","year":"2010"},{"key":"10.1016\/j.ejor.2014.04.011_b0280","series-title":"Extrapolation, interpolation and smoothing of stationary time series","author":"Wiener","year":"1949"},{"key":"10.1016\/j.ejor.2014.04.011_b0285","series-title":"Advances in neural information processing systems 8","first-page":"514","article-title":"Gaussian processes for regression","author":"Williams","year":"1996"},{"key":"10.1016\/j.ejor.2014.04.011_b0290","unstructured":"Zhang, J., & Sanderson, A. C. (2007). DE-AEC: A differential evolution algorithm based on adaptive evolution control. In 2007 IEEE congress on evolutionary computation (CEC) (pp. 3824\u20133830). Piscataway: IEEE."},{"issue":"1","key":"10.1016\/j.ejor.2014.04.011_b0295","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1109\/TSMCC.2005.855506","article-title":"Combining global and local surrogate models to accelerate evolutionary optimization","volume":"37","author":"Zhou","year":"2007","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications"},{"key":"10.1016\/j.ejor.2014.04.011_b0300","series-title":"Optimization techniques","first-page":"138","article-title":"On the use of statistical models of multimodal functions for the construction of the optimization algorithms","volume":"Vol. 23","author":"Zilinskas","year":"1980"},{"issue":"3","key":"10.1016\/j.ejor.2014.04.011_b0305","first-page":"349","article-title":"Teachers corner: A note on interpretation of the paired-samples t Test","volume":"22","author":"Zimmerman","year":"1997","journal-title":"Journal of Educational and Behavioral Statistics"}],"container-title":["European Journal of Operational Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377221714003208?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377221714003208?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,26]],"date-time":"2024-05-26T00:11:11Z","timestamp":1716682271000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377221714003208"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,6]]},"references-count":61,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2015,6]]}},"alternative-id":["S0377221714003208"],"URL":"https:\/\/doi.org\/10.1016\/j.ejor.2014.04.011","relation":{},"ISSN":["0377-2217"],"issn-type":[{"value":"0377-2217","type":"print"}],"subject":[],"published":{"date-parts":[[2015,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models","name":"articletitle","label":"Article Title"},{"value":"European Journal of Operational Research","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ejor.2014.04.011","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}