{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T09:57:15Z","timestamp":1722938235281},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["European Journal of Control"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.ejcon.2023.100819","type":"journal-article","created":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T14:20:07Z","timestamp":1682950807000},"page":"100819","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Correlation analysis-based parameter learning of Hammerstein nonlinear systems with output noise"],"prefix":"10.1016","volume":"72","author":[{"given":"Feng","family":"Li","sequence":"first","affiliation":[]},{"given":"Mingjun","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Yinsheng","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ejcon.2023.100819_bib0001","first-page":"1","article-title":"Modeling of a distillation column based on NARMAX and Hammerstein models","volume":"8","author":"Aggoune","year":"2017","journal-title":"Int. J. Model., Simul., Sci. Comput."},{"key":"10.1016\/j.ejcon.2023.100819_bib0002","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.conengprac.2015.07.011","article-title":"A subspace-based identification of Wiener-Hammerstein benchmark model","volume":"44","author":"Ase","year":"2015","journal-title":"Control Eng. Pract."},{"issue":"12","key":"10.1016\/j.ejcon.2023.100819_bib0003","doi-asserted-by":"crossref","first-page":"2867","DOI":"10.1016\/j.compchemeng.2011.05.013","article-title":"Identification of uncertain MIMO Wiener and Hammerstein models","volume":"35","author":"Biagiola","year":"2011","journal-title":"Comput. Chem. Eng."},{"issue":"28","key":"10.1016\/j.ejcon.2023.100819_bib0004","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1016\/j.ifacol.2015.12.236","article-title":"A new identification method for dual-rate Hammerstein systems","volume":"48","author":"Chen","year":"2015","journal-title":"IFAC Papers OnLine"},{"issue":"8","key":"10.1016\/j.ejcon.2023.100819_bib0005","doi-asserted-by":"crossref","first-page":"2035","DOI":"10.1016\/j.asr.2020.07.002","article-title":"A novel method for solar panel temperature determination based on a wavelet neural network and Hammerstein-Wiener model","volume":"66","author":"Chen","year":"2020","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.ejcon.2023.100819_bib0006","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.ins.2021.06.076","article-title":"An interpretable neural fuzzy Hammerstein-Wiener network for stock price prediction","volume":"577","author":"Chen","year":"2021","journal-title":"Inf. Sci."},{"issue":"4","key":"10.1016\/j.ejcon.2023.100819_bib0007","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1109\/TAC.2010.2101691","article-title":"Recursive identification for MIMO Hammerstein systems","volume":"56","author":"Chen","year":"2011","journal-title":"IEEE Trans. Automat. Contr."},{"issue":"1","key":"10.1016\/j.ejcon.2023.100819_bib0008","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1016\/j.ymssp.2018.12.027","article-title":"Kautz basis expansion-based Hammerstein system identification through separable least squares method","volume":"121","author":"Cheng","year":"2019","journal-title":"Mech. Syst. Signal Process."},{"issue":"3","key":"10.1016\/j.ejcon.2023.100819_bib0009","first-page":"567","article-title":"Iterative algorithms for solutions of Hammerstein equations in real Banach spaces","volume":"2020","author":"Chidume","year":"2020","journal-title":"Fixed Point Theory Appl."},{"issue":"9","key":"10.1016\/j.ejcon.2023.100819_bib0010","doi-asserted-by":"crossref","first-page":"1479","DOI":"10.1016\/j.automatica.2005.03.026","article-title":"Identification of Hammerstein nonlinear ARMAX systems","volume":"41","author":"Ding","year":"2005","journal-title":"Automatica"},{"key":"10.1016\/j.ejcon.2023.100819_bib0011","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.isatra.2018.06.008","article-title":"A novel weighting method for multi-linear MPC control of Hammerstein systems based on included angle","volume":"80","author":"Du","year":"2018","journal-title":"ISA Trans."},{"key":"10.1016\/j.ejcon.2023.100819_bib0012","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/j.automatica.2004.11.016","article-title":"Linear approximations of nonlinear FIR systems for separable input processes","volume":"41","author":"Enqvist","year":"2005","journal-title":"Automatica"},{"key":"10.1016\/j.ejcon.2023.100819_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.ast.2020.106342","article-title":"Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism","volume":"107","author":"Fei","year":"2020","journal-title":"Aerosp. Sci. Technol."},{"key":"10.1016\/j.ejcon.2023.100819_bib0014","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jprocont.2019.03.015","article-title":"Recursive identification of block-oriented nonlinear systems in the presence of outliers","volume":"78","author":"Filipovic","year":"2019","journal-title":"J. Process Control"},{"key":"10.1016\/j.ejcon.2023.100819_bib0015","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1016\/j.neucom.2015.10.077","article-title":"A combined B-spline-neural-network and ARX model for online identification of nonlinear dynamic actuation systems","volume":"175","author":"Folgheraiter","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ejcon.2023.100819_bib0016","series-title":"Nonparametric System Identification","author":"Greblicki","year":"2008"},{"issue":"17","key":"10.1016\/j.ejcon.2023.100819_bib0017","doi-asserted-by":"crossref","first-page":"4467","DOI":"10.1109\/TSP.2014.2333555","article-title":"Single-carrier frequency domain equalization for Hammerstein communication systems using complex-calued neural networks","volume":"62","author":"Hong","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"issue":"22","key":"10.1016\/j.ejcon.2023.100819_bib0018","doi-asserted-by":"crossref","first-page":"7583","DOI":"10.1021\/acs.iecr.8b00809","article-title":"Data-Driven Nonlinear control design using virtual reference feedback tuning based on Block-oriented modeling of nonlinear models","volume":"57","author":"Jing","year":"2018","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.ejcon.2023.100819_bib0019","first-page":"1","article-title":"Multierror stochastic gradient algorithm for identification of a Hammerstein system with random noise and its application in the modeling of a continuous stirring tank reactor","author":"Jing","year":"2021","journal-title":"Optimal Control Appl. Methods"},{"issue":"3","key":"10.1016\/j.ejcon.2023.100819_bib0020","doi-asserted-by":"crossref","first-page":"882","DOI":"10.1109\/JAS.2020.1003093","article-title":"Identification scheme for fractional Hammerstein models with the delayed haar wavelet","volume":"7","author":"Kothari","year":"2020","journal-title":"IEEE-CAA J. Automatica Sinica"},{"issue":"1","key":"10.1016\/j.ejcon.2023.100819_bib0021","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1080\/00949655.2017.1378655","article-title":"Correlation analysis-based error compensation recursive least-square identification method for the Hammerstein model","volume":"88","author":"Li","year":"2018","journal-title":"J. Stat. Comput. Simul."},{"key":"10.1016\/j.ejcon.2023.100819_bib0022","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neucom.2017.03.026","article-title":"Neuro-fuzzy based identification method for Hammerstein output error model with colored noise","volume":"244","author":"Li","year":"2017","journal-title":"Neurocomputing"},{"issue":"17","key":"10.1016\/j.ejcon.2023.100819_bib0023","doi-asserted-by":"crossref","first-page":"3026","DOI":"10.1049\/iet-cta.2017.0306","article-title":"Identification method of neuro-fuzzy-based Hammerstein model with colored noise","volume":"11","author":"Li","year":"2017","journal-title":"IET Control Theory Appl."},{"key":"10.1016\/j.ejcon.2023.100819_bib0024","first-page":"11","article-title":"Data-driven learning algorithm of neural fuzzy based Hammerstein-Wiener system","volume":"8920329","author":"Li","year":"2021","journal-title":"J. Sens."},{"issue":"3","key":"10.1016\/j.ejcon.2023.100819_bib0025","doi-asserted-by":"crossref","first-page":"2115","DOI":"10.1016\/j.jfranklin.2020.12.034","article-title":"A novel Learning algorithm of the neuro-fuzzy based Hammerstein-Wiener model corrupted by process noise","volume":"358","author":"Li","year":"2021","journal-title":"J. Franklin Inst."},{"issue":"9","key":"10.1016\/j.ejcon.2023.100819_bib0026","doi-asserted-by":"crossref","first-page":"1702","DOI":"10.1109\/JAS.2022.105821","article-title":"Data-driven hybrid neural fuzzy network and ARX modeling approach to practical industrial process identification","volume":"9","author":"Li","year":"2022","journal-title":"IEEE\/CAA J. Automatica Sinica"},{"key":"10.1016\/j.ejcon.2023.100819_bib0027","doi-asserted-by":"crossref","first-page":"2635","DOI":"10.1007\/s00034-022-02240-y","article-title":"Parameter learning for the nonlinear system described by a class of Hammerstein models","volume":"42","author":"Li","year":"2023","journal-title":"Circuits, Syst., Signal Process."},{"issue":"2","key":"10.1016\/j.ejcon.2023.100819_bib0028","doi-asserted-by":"crossref","first-page":"886","DOI":"10.1002\/asjc.2829","article-title":"Parameter learning for the nonlinear system described by Hammerstein model with output disturbance","volume":"25","author":"Li","year":"2023","journal-title":"Asian J. Control."},{"issue":"6","key":"10.1016\/j.ejcon.2023.100819_bib0029","doi-asserted-by":"crossref","first-page":"2374","DOI":"10.1007\/s00034-017-0682-7","article-title":"A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem","volume":"37","author":"Li","year":"2018","journal-title":"Circuits, Syst., Signal Process."},{"key":"10.1016\/j.ejcon.2023.100819_bib0030","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.jprocont.2018.12.008","article-title":"An iterative dynamic programming optimization based on biorthogonal spatial-temporal Hammerstein modeling for the enhanced oil recovery of ASP flooding","volume":"73","author":"Li","year":"2019","journal-title":"J. Process Control"},{"issue":"16","key":"10.1016\/j.ejcon.2023.100819_bib0031","doi-asserted-by":"crossref","first-page":"4280","DOI":"10.1016\/j.jfranklin.2016.07.025","article-title":"Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities","volume":"353","author":"Ma","year":"2016","journal-title":"J. Franklin Inst."},{"issue":"13\u201314","key":"10.1016\/j.ejcon.2023.100819_bib0032","doi-asserted-by":"crossref","first-page":"6523","DOI":"10.1016\/j.apm.2016.01.062","article-title":"Recursive maximum likelihood method for the identification of Hammerstein ARMAX system","volume":"40","author":"Ma","year":"2016","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.ejcon.2023.100819_bib0033","series-title":"Theory and Application of the Separable Class of Random Processes","author":"Nuttall","year":"1958"},{"issue":"2020","key":"10.1016\/j.ejcon.2023.100819_bib0034","first-page":"1","article-title":"Benchmark temperature microcontroller for process dynamics and control","volume":"135","author":"Park","year":"2020","journal-title":"Comput. Chem. Eng. Control Eng. Pract."},{"issue":"B","key":"10.1016\/j.ejcon.2023.100819_bib0035","article-title":"Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations","volume":"167","author":"Prasad","year":"2022","journal-title":"Mech. Syst. Signal Process."},{"issue":"5","key":"10.1016\/j.ejcon.2023.100819_bib0036","doi-asserted-by":"crossref","first-page":"1892","DOI":"10.1002\/asjc.2092","article-title":"Nonlinear modeling of PEMFC based on fractional order subspace identification","volume":"22","author":"Qi","year":"2020","journal-title":"Asian J. Control"},{"key":"10.1016\/j.ejcon.2023.100819_bib0037","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.jprocont.2019.01.011","article-title":"MPC relevant identification method for Hammerstein and Wiener models","volume":"80","author":"Quachio","year":"2019","journal-title":"J. Process Control"},{"key":"10.1016\/j.ejcon.2023.100819_bib0038","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.sigpro.2017.06.025","article-title":"Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient","volume":"142","author":"Sheng","year":"2018","journal-title":"Signal Process."},{"issue":"15","key":"10.1016\/j.ejcon.2023.100819_bib0039","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.1016\/j.ifacol.2018.09.061","article-title":"Frequency domain estimation of parallel Hammerstein systems using Gaussian process regression","volume":"51","author":"Stoddard","year":"2018","journal-title":"IFAC PapersOnLine"},{"key":"10.1016\/j.ejcon.2023.100819_bib0040","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.compchemeng.2019.03.022","article-title":"Optimal demand response scheduling of an industrial air separation unit using data-driven dynamic models","volume":"126","author":"Tsay","year":"2019","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.ejcon.2023.100819_bib0041","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.sigpro.2015.05.010","article-title":"Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle","volume":"115","author":"Wang","year":"2015","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.ejcon.2023.100819_bib0042","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1080\/13873954.2016.1142455","article-title":"Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique","volume":"22","author":"Wang","year":"2016","journal-title":"Math. Comput. Model. Dyn. Syst."},{"key":"10.1016\/j.ejcon.2023.100819_bib0043","doi-asserted-by":"crossref","first-page":"1440","DOI":"10.1016\/j.jfranklin.2015.01.015","article-title":"Stochastic gradient algorithm for multi-input multi-output Hammerstein FIR-MA-like systems using the data filtering","volume":"352","author":"Wang","year":"2015","journal-title":"J. Franklin Inst."},{"issue":"18","key":"10.1016\/j.ejcon.2023.100819_bib0044","doi-asserted-by":"crossref","first-page":"5724","DOI":"10.1016\/j.apm.2013.06.016","article-title":"Filtering based multi-innovation extended stochastic gradient algorithm for Hammerstein nonlinear system modeling","volume":"39","author":"Wang","year":"2015","journal-title":"Appl. Math. Model"},{"key":"10.1016\/j.ejcon.2023.100819_bib0045","first-page":"1","article-title":"Extended stochastic gradient identification method for Hammerstein model based on approximate least absolute deviation","author":"Xu","year":"2016","journal-title":"Math. Probl. Eng."},{"issue":"2","key":"10.1016\/j.ejcon.2023.100819_bib0046","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1049\/iet-smt.2017.0253","article-title":"Accelerating frequency domain dielectric spectroscopy measurements on insulation of transformers through system identification","volume":"12","author":"Yang","year":"2018","journal-title":"IET Sci., Meas. Technol."}],"container-title":["European Journal of Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0947358023000481?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0947358023000481?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T14:35:05Z","timestamp":1714228505000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0947358023000481"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":46,"alternative-id":["S0947358023000481"],"URL":"https:\/\/doi.org\/10.1016\/j.ejcon.2023.100819","relation":{},"ISSN":["0947-3580"],"issn-type":[{"value":"0947-3580","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Correlation analysis-based parameter learning of Hammerstein nonlinear systems with output noise","name":"articletitle","label":"Article Title"},{"value":"European Journal of Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ejcon.2023.100819","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 European Control Association. Published by Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100819"}}