{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T04:12:20Z","timestamp":1728706340571},"reference-count":78,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004177","name":"Ministry of Water Resources","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004177","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.ecoinf.2023.101980","type":"journal-article","created":{"date-parts":[[2023,1,5]],"date-time":"2023-01-05T03:19:45Z","timestamp":1672888785000},"page":"101980","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India"],"prefix":"10.1016","volume":"74","author":[{"given":"Mukesh","family":"Kumar","sequence":"first","affiliation":[]},{"given":"Pitam","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Priyamvada","family":"Singh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2023.101980_bb0005","doi-asserted-by":"crossref","first-page":"100365","DOI":"10.1016\/j.gsd.2020.100365","article-title":"Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP)","author":"Achu","year":"2020","journal-title":"Groundw. Sustain. Dev."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bib297","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1007\/s12524-019-01086-3","article-title":"Identification of groundwater potential zones using RS, GIS and AHP techniques: a case study in a part of Deccan volcanic province (DVP), Maharashtra, India","volume":"48","author":"Ajay Kumar","year":"2020","journal-title":"J. Indian Soc. Remote Sens."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0010","first-page":"1","article-title":"Predicting groundwater recharge potential zones using geospatial technique","volume":"6","author":"Akter","year":"2020","journal-title":"Sustain. Water Res. Manag."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40808-016-0150-6","article-title":"Spatial mapping of artesian zone at Iraqi southern desert using a GIS-based random forest machine learning model","volume":"2","author":"Al-Abadi","year":"2016","journal-title":"Model. Earth Syst. Environ."},{"key":"10.1016\/j.ecoinf.2023.101980_bib315","first-page":"100610","article-title":"Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia","volume":"24","author":"Andualem","year":"2019","journal-title":"J. Hydrol.: Reg. Stud."},{"issue":"7","key":"10.1016\/j.ecoinf.2023.101980_bb0020","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1007\/s12517-018-3484-8","article-title":"Spatial assessment of the potential of groundwater quality using fuzzy AHP in GIS","volume":"11","author":"Azimi","year":"2018","journal-title":"Arab. J. Geosci."},{"issue":"6","key":"10.1016\/j.ecoinf.2023.101980_bb0030","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1007\/s00254-008-1619-z","article-title":"Forecasting of groundwater level in hard rock region using artificial neural network","volume":"58","author":"Banerjee","year":"2009","journal-title":"Environ. Geol."},{"issue":"15","key":"10.1016\/j.ecoinf.2023.101980_bib303","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12517-020-05702-2","article-title":"Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques","volume":"13","author":"Bera","year":"2020","journal-title":"Arabian J. Geosci."},{"issue":"12","key":"10.1016\/j.ecoinf.2023.101980_bb0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12665-020-09053-9","article-title":"Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal","volume":"79","author":"Biswas","year":"2020","journal-title":"Environ. Earth Sci."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bib311","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learing"},{"year":"1984","series-title":"Classification and regression trees","author":"Breiman","key":"10.1016\/j.ecoinf.2023.101980_bib312"},{"issue":"11","key":"10.1016\/j.ecoinf.2023.101980_bb0040","doi-asserted-by":"crossref","first-page":"2815","DOI":"10.5194\/nhess-13-2815-2013","article-title":"Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues","volume":"13","author":"Catani","year":"2013","journal-title":"Nat. Hazards Earth Syst. Sci."},{"issue":"6","key":"10.1016\/j.ecoinf.2023.101980_bb0045","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s12594-018-0929-3","article-title":"Identification of groundwater potential zones using remote sensing and GIS of KJ watershed, India","volume":"91","author":"Chaudhary","year":"2018","journal-title":"J. Geol. Soc. India"},{"key":"10.1016\/j.ecoinf.2023.101980_bb0050","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1016\/j.scitotenv.2018.04.055","article-title":"GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models","volume":"634","author":"Chen","year":"2018","journal-title":"Sci. Total Environ."},{"issue":"7","key":"10.1016\/j.ecoinf.2023.101980_bb0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13201-018-0848-x","article-title":"Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India","volume":"8","author":"Das","year":"2018","journal-title":"Appl. Water Sci."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bb0060","first-page":"223","article-title":"Modelling potential groundwater zones of Puruliya district West Bengal, India using remote sensing and GIS technique","volume":"3","author":"Das","year":"2019","journal-title":"Geol. Ecol. Landsc."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.cageo.2020.104470","article-title":"Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping","volume":"139","author":"Fang","year":"2020","journal-title":"Comput. Geosci."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bib299","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1007\/s40808-017-0362-4","article-title":"Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India","volume":"3","author":"Gayen","year":"2017","journal-title":"Model. Earth Syst. Environ."},{"issue":"18","key":"10.1016\/j.ecoinf.2023.101980_bib301","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12665-021-09921-y","article-title":"Spatial mapping of groundwater potential using data-driven evidential belief function, knowledge-based analytic hierarchy process and an ensemble approach","volume":"80","author":"Ghosh","year":"2021","journal-title":"Environ. Earth Sci."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0070","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1007\/s40899-020-00372-0","article-title":"Application of geospatial technology for delineating groundwater potential zones in the Gandheswari watershed, West Bengal","volume":"6","author":"Ghosh","year":"2020","journal-title":"Sustain. Water Res. Manag."},{"key":"10.1016\/j.ecoinf.2023.101980_bib310","doi-asserted-by":"crossref","first-page":"909","DOI":"10.1007\/s13762-013-0464-0","article-title":"A. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, Northern Iran","volume":"11","author":"Jafari","year":"2014","journal-title":"Int. J. Environ. Sci. Technol."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0075","doi-asserted-by":"crossref","first-page":"4073","DOI":"10.1007\/s10661-014-4073-2","article-title":"Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model","volume":"187","author":"Kaliraj","year":"2015","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.ecoinf.2023.101980_bib302","doi-asserted-by":"crossref","first-page":"105850","DOI":"10.1016\/j.ecolind.2019.105850","article-title":"Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT)","volume":"110","author":"Kaur","year":"2020","journal-title":"Ecological Indicat."},{"issue":"6","key":"10.1016\/j.ecoinf.2023.101980_bib300","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12040-019-1155-0","article-title":"Groundwater potential assessment of the Sero plain using bivariate models of the frequency ratio, Shannon entropy and evidential belief function","volume":"128","author":"Khoshtinat","year":"2019","journal-title":"J. Earth Syst. Sci."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0080","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1080\/10106049.2016.1232314","article-title":"Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach","volume":"33","author":"Kumar","year":"2018","journal-title":"Geocarto Int."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0085","first-page":"1","article-title":"Fuzzy AHP based GIS and remote sensing techniques for the groundwater potential zonation for Bundelkhand craton region, India","author":"Kumar","year":"2021","journal-title":"Geocarto Int."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bib316","first-page":"387","article-title":"Integrating GIS and remote sensing for delineation of groundwater potential zones in Bundelkhand Region, India","volume":"25","author":"Kumar","year":"2022","journal-title":"The Egyptian J. Remote Sens. Space Sci."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bb0090","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1007\/s40808-020-00761-6","article-title":"Mapping specific groundwater vulnerability to nitrate using random forest: case of sais basin, Morocco","volume":"6","author":"Lahjouj","year":"2020","journal-title":"Model. Earth Syst. Environ."},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bib305","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1080\/10106049.2017.1303091","article-title":"GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea","volume":"33","author":"Lee","year":"2018","journal-title":"Geocarto Int."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0095","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.jenvman.2011.09.016","article-title":"Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping","volume":"96","author":"Lee","year":"2012","journal-title":"J. Environ. Manag."},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bb0100","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.1007\/s10040-012-0894-7","article-title":"Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model","volume":"20","author":"Lee","year":"2012","journal-title":"Hydrogeol. J."},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bb0105","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.1007\/s10040-012-0894-7","article-title":"Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model","volume":"20","author":"Lee","year":"2012","journal-title":"Hydrogeol. J."},{"year":"2020","series-title":"Forest fire susceptibility mapping using analytical hierarchy process approach for Chandoli","author":"Lohar","key":"10.1016\/j.ecoinf.2023.101980_bib298"},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0110","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.gsf.2011.10.007","article-title":"Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques","volume":"3","author":"Magesh","year":"2012","journal-title":"Geosci. Front."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bib313","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1007\/s12517-012-0795-z","article-title":"Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS","volume":"7","author":"Manap","year":"2014","journal-title":"Arabian J. Geosci."},{"issue":"12","key":"10.1016\/j.ecoinf.2023.101980_bb0115","doi-asserted-by":"crossref","first-page":"4293","DOI":"10.1007\/s11269-016-1421-8","article-title":"Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique","volume":"30","author":"Mandal","year":"2016","journal-title":"Water Resour. Manag."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.gsd.2021.100554","article-title":"Assessing the impact of drought conditions on groundwater potential in Godavari middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm","volume":"13","author":"Masroor","year":"2021","journal-title":"Groundw. Sustain. Dev."},{"issue":"4","key":"10.1016\/j.ecoinf.2023.101980_bb0125","doi-asserted-by":"crossref","first-page":"1883","DOI":"10.1016\/j.asr.2021.10.021","article-title":"A multi-criteria landslide susceptibility mapping using deep multi-layer perceptron network: A case study of Srinagar-Rudraprayag region (India)","volume":"69","author":"Meghanadh","year":"2022","journal-title":"Adv. Space Res."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0130","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s11269-018-2102-6","article-title":"Mapping groundwater potential using a novel hybrid intelligence approach","volume":"33","author":"Miraki","year":"2019","journal-title":"Water Resour. Manag."},{"issue":"4","key":"10.1016\/j.ecoinf.2023.101980_bb0135","doi-asserted-by":"crossref","first-page":"1307","DOI":"10.1007\/s13146-018-0420-7","article-title":"Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: a case study in the Leylia\u2013Keynow watershed, southwest of Iran","volume":"34","author":"Mohammadi-Behzad","year":"2019","journal-title":"Carbonates Evaporites"},{"issue":"16","key":"10.1016\/j.ecoinf.2023.101980_bb0140","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12665-019-8518-3","article-title":"Land subsidence susceptibility assessment using random forest machine learning algorithm","volume":"78","author":"Mohammady","year":"2019","journal-title":"Environ. Earth Sci."},{"issue":"6","key":"10.1016\/j.ecoinf.2023.101980_bib296","doi-asserted-by":"crossref","first-page":"2259","DOI":"10.1007\/s10653-018-0096-x","article-title":"Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context","volume":"40","author":"Mukherjee","year":"2018","journal-title":"Environ. Geochem. Health"},{"key":"10.1016\/j.ecoinf.2023.101980_bb0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.catena.2020.104681","article-title":"Delineation of groundwater potential zones in a drought-prone semi-arid region of East India using GIS and analytical hierarchical process techniques","volume":"194","author":"Mukherjee","year":"2020","journal-title":"Catena"},{"issue":"14","key":"10.1016\/j.ecoinf.2023.101980_bb0150","doi-asserted-by":"crossref","first-page":"5217","DOI":"10.1007\/s11269-015-1114-8","article-title":"A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping","volume":"29","author":"Naghibi","year":"2015","journal-title":"Water Resour. Manag."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0155","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s12145-014-0145-7","article-title":"Groundwater qanat potential mapping using frequency ratio and Shannon\u2019s entropy models in the Moghan watershed Iran","volume":"8","author":"Naghibi","year":"2015","journal-title":"Earth Sci. Informat."},{"issue":"9","key":"10.1016\/j.ecoinf.2023.101980_bb0160","doi-asserted-by":"crossref","first-page":"2761","DOI":"10.1007\/s11269-017-1660-3","article-title":"Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping","volume":"31","author":"Naghibi","year":"2017","journal-title":"Water Resour. Manag."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bb0165","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1007\/s00704-016-2022-4","article-title":"A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS","volume":"131","author":"Naghibi","year":"2018","journal-title":"Theor. Appl. Climatol."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2020.125197","article-title":"Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors","volume":"589","author":"Naghibi","year":"2020","journal-title":"J. Hydrol."},{"issue":"7","key":"10.1016\/j.ecoinf.2023.101980_bb0175","doi-asserted-by":"crossref","first-page":"2473","DOI":"10.3390\/ijerph17072473","article-title":"Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: the DakNong province case-study","volume":"17","author":"Nguyen","year":"2020","journal-title":"Vietnam. Int. J. Environ. Res. Public Health"},{"issue":"1\u20132","key":"10.1016\/j.ecoinf.2023.101980_bb0180","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.jhydrol.2011.05.015","article-title":"Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)","volume":"405","author":"Ozdemir","year":"2011","journal-title":"J. Hydrol."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2020.125033","article-title":"Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)","volume":"588","author":"Panahi","year":"2020","journal-title":"J. Hydrol."},{"key":"10.1016\/j.ecoinf.2023.101980_bib307","doi-asserted-by":"crossref","first-page":"55","DOI":"10.16943\/ptinsa\/2020\/49792","article-title":"Bundelkhand craton","volume":"86","author":"Pati","year":"2020","journal-title":"Proceedings of Indian National Science Academy"},{"key":"10.1016\/j.ecoinf.2023.101980_bb0190","doi-asserted-by":"crossref","first-page":"2485","DOI":"10.1016\/j.jclepro.2017.11.161","article-title":"Delineation of groundwater potential zone for sustainable development: A case study from ganga alluvial plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process","volume":"172","author":"Patra","year":"2018","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2021.101389","article-title":"Na\u00efve Bayes ensemble models for groundwater potential mapping","volume":"64","author":"Pham","year":"2021","journal-title":"Ecol. Informat."},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bb0200","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/s13201-015-0270-6","article-title":"Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique","volume":"7","author":"Pinto","year":"2017","journal-title":"Appl Water Sci"},{"issue":"1","key":"10.1016\/j.ecoinf.2023.101980_bib308","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/s13201-015-0270-6","article-title":"Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique","volume":"7","author":"Pinto","year":"2017","journal-title":"Appl. Water Sci."},{"issue":"15","key":"10.1016\/j.ecoinf.2023.101980_bb0205","doi-asserted-by":"crossref","first-page":"18501","DOI":"10.1007\/s11356-020-10646-x","article-title":"Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya","volume":"28","author":"Pradhan","year":"2021","journal-title":"Environ. Sci. Pollut. Res."},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0210","first-page":"121","article-title":"Drainage morphometry of the Dhasan river basin, Bundelkhand craton, Central India, using remote sensing and GIS techniques","volume":"10","author":"Prakash","year":"2016","journal-title":"J. Geom."},{"issue":"6","key":"10.1016\/j.ecoinf.2023.101980_bb0215","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1080\/15481603.2020.1794104","article-title":"Application of machine learning techniques in groundwater potential mapping along the west coast of India","volume":"57","author":"Prasad","year":"2020","journal-title":"GISci. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0220","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.catena.2015.10.010","article-title":"Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran region, Iran","volume":"137","author":"Rahmati","year":"2016","journal-title":"Catena"},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0225","doi-asserted-by":"crossref","first-page":"2315","DOI":"10.1007\/s10668-021-01535-5","article-title":"Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems","volume":"24","author":"Rane","year":"2022","journal-title":"Environ. Dev. Sustain."},{"key":"10.1016\/j.ecoinf.2023.101980_bib309","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/B978-0-444-63369-9.00011-2","volume":"19","author":"Regmi","year":"2015","journal-title":"A review of mass movement processes and risk in the critical zone of Earth. Developments in Earth Surface Processes"},{"key":"10.1016\/j.ecoinf.2023.101980_bb0230","series-title":"In 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)","first-page":"116","article-title":"Groundwater potential mapping using machine learning models for northeastern Karbi Anglong district, Assam, India","author":"Sachdeva","year":"2020"},{"issue":"2","key":"10.1016\/j.ecoinf.2023.101980_bb0235","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s00477-020-01891-0","article-title":"Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India","volume":"35","author":"Sachdeva","year":"2021","journal-title":"Stoch. Env. Res. Risk A."},{"key":"10.1016\/j.ecoinf.2023.101980_bib306","doi-asserted-by":"crossref","first-page":"125321","DOI":"10.1016\/j.jhydrol.2020.125321","article-title":"A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer","volume":"591","author":"Sahour","year":"2020","journal-title":"J. Hydrol."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.catena.2019.104249","article-title":"Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment","volume":"186","author":"Sameen","year":"2020","journal-title":"Catena"},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bb0245","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s12517-018-3510-x","article-title":"Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Bey\u015fehir Lake Basin, Turkey","volume":"11","author":"\u015eener","year":"2018","journal-title":"Arab. J. Geosci."},{"issue":"4","key":"10.1016\/j.ecoinf.2023.101980_bb0250","first-page":"747","article-title":"Delineating groundwater potential zones in Western Cameroon highlands using GIS based artificial neural networks model and remote sensing data","volume":"15","author":"Sokeng","year":"2016","journal-title":"Int. J. Innov. Appl. Stud."},{"issue":"3","key":"10.1016\/j.ecoinf.2023.101980_bb0255","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1007\/s00254-004-1166-1","article-title":"The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain","volume":"47","author":"Sreedevi","year":"2005","journal-title":"Environ. Geol."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0260","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.ymssp.2018.03.022","article-title":"Wavelet support vector machine-based prediction model of dam deformation","volume":"110","author":"Su","year":"2018","journal-title":"Mech. Syst. Signal Process."},{"issue":"7","key":"10.1016\/j.ecoinf.2023.101980_bb0265","doi-asserted-by":"crossref","first-page":"4117","DOI":"10.1007\/s13201-017-0571-z","article-title":"Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district West Bengal","volume":"7","author":"Thapa","year":"2017","journal-title":"Appl. Water Sci."},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bib304","doi-asserted-by":"crossref","first-page":"4513","DOI":"10.1007\/s13201-017-0603-8","article-title":"Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: a case study in a coal mine area of the Damodar Valley, India","volume":"7","author":"Tiwari","year":"2017","journal-title":"Appl. Water Sci."},{"issue":"4","key":"10.1016\/j.ecoinf.2023.101980_bb0270","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40808-016-0250-3","article-title":"Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India","volume":"2","author":"Wagh","year":"2016","journal-title":"Model. Earth Syst. Environ."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0275","first-page":"2019","article-title":"Remote sensing landslide recognition based on convolutional neural network","author":"Wang","year":"2019","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0280","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1016\/j.scitotenv.2019.02.263","article-title":"Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China","volume":"666","author":"Wang","year":"2019","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.ecoinf.2023.101980_bb0285","doi-asserted-by":"crossref","DOI":"10.1016\/j.cageo.2020.104445","article-title":"Comparative study of landslide susceptibility mapping with different recurrent neural networks","volume":"138","author":"Wang","year":"2020","journal-title":"Comput. Geosci."},{"issue":"15","key":"10.1016\/j.ecoinf.2023.101980_bb0290","first-page":"1","article-title":"Application of convolutional neural network in predicting groundwater potential using remote sensing: a case study in southeastern Liaoning","volume":"13","author":"Xu","year":"2020","journal-title":"China. Arabian J. Geosci."},{"issue":"8","key":"10.1016\/j.ecoinf.2023.101980_bb0295","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12665-016-5424-9","article-title":"GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran","volume":"75","author":"Zabihi","year":"2016","journal-title":"Environ. Earth Sci."}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954123000092?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954123000092?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T17:23:23Z","timestamp":1728667403000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574954123000092"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":78,"alternative-id":["S1574954123000092"],"URL":"https:\/\/doi.org\/10.1016\/j.ecoinf.2023.101980","relation":{},"ISSN":["1574-9541"],"issn-type":[{"type":"print","value":"1574-9541"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2023.101980","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101980"}}