{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:26:25Z","timestamp":1726763185936},"reference-count":87,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,12,20]],"date-time":"2022-12-20T00:00:00Z","timestamp":1671494400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.ecoinf.2022.101955","type":"journal-article","created":{"date-parts":[[2022,12,21]],"date-time":"2022-12-21T01:22:17Z","timestamp":1671585737000},"page":"101955","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["Application of machine learning approaches for land cover monitoring in northern Cameroon"],"prefix":"10.1016","volume":"74","author":[{"given":"Yisa Ginath","family":"Yuh","sequence":"first","affiliation":[]},{"given":"Wiktor","family":"Tracz","sequence":"additional","affiliation":[]},{"given":"H. Damon","family":"Matthews","sequence":"additional","affiliation":[]},{"given":"Sarah E.","family":"Turner","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2022.101955_bb0005","doi-asserted-by":"crossref","first-page":"3440","DOI":"10.1080\/01431161.2014.903435","article-title":"Landuse\/ cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers","volume":"35","author":"Adam","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0010","doi-asserted-by":"crossref","first-page":"179","DOI":"10.3390\/sym9090179","article-title":"NS-k-NN: neutrosophic set-based k-nearest neighbors classifier","volume":"9","author":"Akbulut","year":"2017","journal-title":"Symmetry"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0015","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1146\/annurev.energy.29.062403.102142","article-title":"Grazing systems, ecosystem responses, and global change","volume":"29","author":"Asner","year":"2004","journal-title":"Annu. Rev. Environ. Resour."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0020","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: a review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0025","series-title":"Advanced Lectures on Machine Learning. Lecture Notes in Artificial Intelligence","article-title":"Introduction to statistical learning theory","volume":"vol. 3176","author":"Bousquet","year":"2004"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0030","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0035","first-page":"1","article-title":"Monitoring land cover change dynamics in Africa: a sample based remote sensing approach","volume":"29","author":"Brink","year":"2008","journal-title":"Appl. Geogr."},{"key":"10.1016\/j.ecoinf.2022.101955_bib457","unstructured":"Britannica, T. (Ed.), n.d. of Encyclopaedia (2022, September 2). Central Park. Encyclopedia Britannica. https:\/\/www.britannica.com\/place\/Central-Park-New-York-City."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0040","series-title":"Introduction to Remote Sensing","author":"Campbell","year":"1996"},{"issue":"14","key":"10.1016\/j.ecoinf.2022.101955_bb0045","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.3390\/rs12142319","article-title":"Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites","volume":"12","author":"Cardoso-Fernandes","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0050","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1080\/01431168908903951","article-title":"An alternative approach to estimate atmospheric correction in multitemporal studies","volume":"10","author":"Caselles","year":"1989","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0055","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/0034-4257(88)90019-3","article-title":"An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data","volume":"24","author":"Chavez","year":"1988","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0060","first-page":"1025","article-title":"Image-based atmospheric correction-revisited and improved","volume":"62","author":"Chavez","year":"1996","journal-title":"Photogramm. Eng. Remote. Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0070","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1007\/s12665-012-2207-9","article-title":"Vulnerability of water resources in northern Cameroon in the context of climate change","volume":"70","author":"Cheo","year":"2013","journal-title":"Environ. Earth Sci."},{"issue":"4","key":"10.1016\/j.ecoinf.2022.101955_bb0075","first-page":"271","article-title":"Guest editorial for special issue of statistical analysis and data mining","volume":"6","author":"Clarke","year":"2013"},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101955_bb0080","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0085","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0090","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.cageo.2013.10.008","article-title":"Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information","volume":"63","author":"Cracknell","year":"2014","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0095","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.rse.2011.11.020","article-title":"A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery","volume":"118","author":"Duro","year":"2012","journal-title":"Rem. Sens. Environ."},{"issue":"109\u2013123","key":"10.1016\/j.ecoinf.2022.101955_bb0100","first-page":"76","article-title":"Assessing change in national forest monitoring capacities of 99 tropical Countries","volume":"352","author":"Erika","year":"2015","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0105","series-title":"Encountering development: The making and unmaking of the Third World","volume":"vol. 1","author":"Escobar","year":"2011"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0110","series-title":"On Definitions of Forest and Forest Change, Forest Resources Assessment Programme Working Paper 33, November, 2000","first-page":"15","author":"FAO","year":"2000"},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101955_bb0115","article-title":"An assessment of impacts of climate change on available water resources and security in Cameroon","volume":"11","author":"Fonteh","year":"2014","journal-title":"J. Cameroon Acad. Sci."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0120","series-title":"Water Resources and Climate Change: Themanagement of Water Resources","first-page":"528","volume":"vol. 2","year":"2002"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0125","series-title":"NASA EOSDIS Land Processes DAAC","article-title":"MCD12Q1 MODIS\/Terra+Aqua land cover type yearly L3 Global 500m SIN Grid V006 [Data set]","author":"Friedl","year":"2019"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0130","doi-asserted-by":"crossref","first-page":"3923","DOI":"10.3390\/rs6053923","article-title":"MAD-MEX: automatic wall-to-wall land cover monitoring for the Mexican REDD-MRV program using all Landsat data","volume":"6","author":"Gebhardt","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0135","first-page":"298","article-title":"A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery","volume":"26","author":"Ghosh","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0140","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.patrec.2005.08.011","article-title":"Random forests for land cover classification","volume":"27","author":"Gislason","year":"2006","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0145","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical remotely sensed time series data for land cover classification: a review","volume":"116","author":"Gomez","year":"2016","journal-title":"Int. Soc. Photogram. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0150","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM? data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0155","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1007\/s12665-015-4804-x","article-title":"Water irrigation management using remote sensing techniques: a case study in Central Tunisia","volume":"75","author":"Guermazi","year":"2016","journal-title":"Environ. Earth Sci."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0160","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1126\/science.1244693","article-title":"High-resolution global maps of 21st-century forest cover change","volume":"342","author":"Hansen","year":"2013","journal-title":"Science"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0165","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Hastie","year":"2009"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0170","doi-asserted-by":"crossref","first-page":"648","DOI":"10.1016\/j.rse.2017.09.035","article-title":"Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites","volume":"204","author":"Heydari","year":"2018","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0180","series-title":"Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd","author":"Jensen","year":"2005"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0185","first-page":"352","article-title":"kernel functions analysis for support vector machines for land cover classification","volume":"11","author":"Kavzoglu","year":"2009","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0190","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.rse.2016.02.028","article-title":"A meta-analysis of remote sensing research on supervised pixel-based land cover image classification processes: general guidelines for practitioners and future research","volume":"177","author":"Khatami","year":"2016","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0195","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1016\/j.rse.2009.01.010","article-title":"Land cover mapping of large areas using chain classification of neighboring Landsat satellite images","volume":"113","author":"Knorn","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0200","author":"Kongnso","year":"2022"},{"issue":"4","key":"10.1016\/j.ecoinf.2022.101955_bb0205","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1017\/S0269888998214044","article-title":"Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7","volume":"13","author":"Kubat","year":"1999","journal-title":"Knowl. Eng. Rev."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0210","first-page":"2687","article-title":"Applied predictive modeling. [in] Lo, C.P.; Choi, J. 2004. A hybrid approach to urban land use\/cover mapping using Landsat 7 enhanced thematic mapper plus (ETM+) images","volume":"25","author":"Kuhn","year":"2016","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0215","series-title":"Package \u2018RStoolbox\u2019","author":"Leutner","year":"2016"},{"key":"10.1016\/j.ecoinf.2022.101955_bib456","doi-asserted-by":"crossref","first-page":"7094","DOI":"10.1038\/s41598-021-86476-9","article-title":"Inferring ecosystem networks as information flows","volume":"11","author":"Li","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0220","first-page":"38","article-title":"Finer-resolution mapping of global land cover: recent developments, consistency analysis, and prospects","volume":"2021","author":"Liu","year":"2021","journal-title":"J. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0225","doi-asserted-by":"crossref","first-page":"5174","DOI":"10.3390\/su11195174","article-title":"Evaluating land use and land cover change in the gaborone Dam Catchment, Botswana, from 1984-2015 using GIS and remote sensing","volume":"11","author":"Matlhodi","year":"2019","journal-title":"Sustainability"},{"issue":"3","key":"10.1016\/j.ecoinf.2022.101955_bb0230","doi-asserted-by":"crossref","first-page":"1750e1769","DOI":"10.3390\/ijgi4031750","article-title":"Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region of Egypt","volume":"4","author":"Megahed","year":"2015","journal-title":"ISPRS Int. J. Geo Inf."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0235","series-title":"Deforestation Trends in the Congo Basin: Reconciling Economic Growth and Forest Protection","author":"Megevand","year":"2013"},{"issue":"6","key":"10.1016\/j.ecoinf.2022.101955_bb0240","doi-asserted-by":"crossref","first-page":"2838","DOI":"10.3390\/rs5062838","article-title":"The performance of random forests in an operational setting for large area sclerophyll forest classification","volume":"5","author":"Mellor","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0245","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0184926","article-title":"Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing","volume":"12","author":"Midekisa","year":"2017","journal-title":"PLoS One"},{"issue":"12","key":"10.1016\/j.ecoinf.2022.101955_bb0250","doi-asserted-by":"crossref","first-page":"131","DOI":"10.3390\/environments5120131","article-title":"Land use\/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in azrou forest, in the Central Middle Atlas of Morocco","volume":"5","author":"Mohajane","year":"2018","journal-title":"Environments"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0255","series-title":"Structures et dynamiques des esp\u00e8ces ligneuses dans les zones Sud Est du Parc National de Waza. M\u00e9moire du Dipl\u00f4me d\u2019Ing\u00e9nieur des Eaux et For\u00eats","first-page":"62","author":"Ndjidda","year":"2001"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0260","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/s18010018","article-title":"Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery","volume":"18","author":"Noi","year":"2017","journal-title":"Sensors"},{"issue":"11","key":"10.1016\/j.ecoinf.2022.101955_bb0265","doi-asserted-by":"crossref","first-page":"933","DOI":"10.1641\/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2","article-title":"Terrestrial ecoregions of the world: a new map of life on earth","volume":"51","author":"Olson","year":"2001","journal-title":"BioScience"},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101955_bb0270","first-page":"1e22","article-title":"Modelado del cambio de usos del suelo urbano a trav_es de Redes Neuronales Artificiales. Comparaci_on con dos aplicaciones de software","volume":"14","author":"Pacheco","year":"2014","journal-title":"GeoFocus"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0275","first-page":"372","article-title":"Enhanced land use\/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity","volume":"23","author":"Paneque-Ga\u2019lvez","year":"2013","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0280","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.rse.2016.10.010","article-title":"Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas","volume":"187","author":"Pelletier","year":"2016","journal-title":"Rem. Sens. Environ."},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101955_bb0285","first-page":"14","article-title":"Contextualising extractivism in Africa","volume":"2","author":"Pereira","year":"2021","journal-title":"Feminist Africa"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0290","article-title":"Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data","volume":"112165","author":"Potapov","year":"2020","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0295","doi-asserted-by":"crossref","DOI":"10.1038\/s43016-021-00429-z","article-title":"Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century","author":"Potapov","year":"2021","journal-title":"Nat. Food."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0300","doi-asserted-by":"crossref","DOI":"10.3389\/frsen.2022.856903","article-title":"The global 2000-2020 land cover and land use change dataset derived from the Landsat archive: first results","author":"Potapov","year":"2022","journal-title":"Front. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0305","series-title":"Comparison of Machine Learning Algorithms for Classification of Tropical Ecosystems Observed by Multiple Sensors at Multiple Scales","author":"Pouteaua","year":"2011"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0310","doi-asserted-by":"crossref","first-page":"153","DOI":"10.3390\/rs70100153","article-title":"Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery","volume":"7","author":"Qian","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0315","series-title":"R: A Language and Environment for Statistical Computing","author":"R Core Team","year":"2016"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0320","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for land-cover classification","volume":"67","author":"Rodriguez-Galiano","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0325","author":"Royal Collection Trust"},{"issue":"4","key":"10.1016\/j.ecoinf.2022.101955_bb0330","doi-asserted-by":"crossref","first-page":"875","DOI":"10.3390\/rs1040875","article-title":"Supervised classification of agricultural land cover using a modified k-NN technique (MNN) and Landsat remote sensing imagery","volume":"1","author":"Samaniego","year":"2009","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0335","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.3390\/rs13081446","article-title":"Assessing accuracy of land cover change maps derived from automated digital processing and visual interpretation in tropical forests in Indonesia","volume":"13","author":"Sari","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0340","series-title":"Monitoring and Modeling of Global Changes: A Geomatics Perspective","first-page":"265","article-title":"Support vector machines for land cover mapping from remote sensor imagery","author":"Shi","year":"2015"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0345","article-title":"Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil","volume":"21","author":"Silva","year":"2020","journal-title":"Glob. Ecol. Conserv."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0355","doi-asserted-by":"crossref","first-page":"1461","DOI":"10.1080\/014311699212560","article-title":"Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach","volume":"20","author":"Smits","year":"1999","journal-title":"Int. J. Remote Sens."},{"issue":"11","key":"10.1016\/j.ecoinf.2022.101955_bb0360","first-page":"235","article-title":"Impact of wood cuts on the structure and floristic diversity of vegetation in the peri-urban zone of Ngaoundere, Cameroon","volume":"2","author":"Tchobsala","year":"2010","journal-title":"J. Ecol. Nat. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0365","series-title":"Evolution r\u00e9cente des territoires de l\u2019Adamawa central: de la spatialisation \u00e0 l\u2019aide pour un d\u00e9veloppement ma\u00eetris\u00e9. Universit\u00e9 d\u2019Orl\u00e9ans. Ecole doctorale sciences de l\u2019homme et de la soci\u00e9t\u00e9. HDR. Discipline (G\u00e9ographie-Am\u00e9nagement Environnement)","first-page":"267","author":"Tchotsoua","year":"2006"},{"issue":"1","key":"10.1016\/j.ecoinf.2022.101955_bb0370","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.9.095095","article-title":"Applicability of data mining algorithms in the identification of beach features\/patterns on high-resolution satellite data","volume":"9","author":"Teodoro","year":"2015","journal-title":"J. Appl. Remote. Sens."},{"issue":"1s","key":"10.1016\/j.ecoinf.2022.101955_bb0380","first-page":"67","article-title":"Classification performance of land use from multispectral remote sensing images using decision tree, K-nearest neighbor, random forest and support vector machine using EuroSAT data","volume":"10","author":"Thakur","year":"2022","journal-title":"Int. J. Intellig. Syst. Appl. Eng."},{"issue":"2","key":"10.1016\/j.ecoinf.2022.101955_bb0385","doi-asserted-by":"crossref","DOI":"10.17690\/013232.2","article-title":"Land cover classification of finnish lapland using decision tree classification algorithm","volume":"23","author":"T\u00f6rm\u00e4","year":"2013","journal-title":"Photogram. J. Finland"},{"issue":"10","key":"10.1016\/j.ecoinf.2022.101955_bb0390","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0075852","article-title":"Effective key parameter determination for an automatic approach to land cover classification based on multispectral remote sensing imagery","volume":"8","author":"Wang","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0395","series-title":"Land Use, Land Use Change, and Forestry","author":"Watson","year":"2001"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0400","doi-asserted-by":"crossref","first-page":"488","DOI":"10.3390\/rs9050488","article-title":"Estimation and mapping of winter oilseed rape LAI from high spatial resolution satellite data based on a hybrid method","volume":"9","author":"Wei","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0410","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/S0167-8809(02)00102-0","article-title":"Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa","volume":"95","author":"Wessels","year":"2003","journal-title":"Agric. Ecosyst. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0415","doi-asserted-by":"crossref","first-page":"4768","DOI":"10.1109\/TGRS.2015.2409195","article-title":"Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles","volume":"53","author":"Xia","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0420","series-title":"Manual of geographic information systems","first-page":"647","article-title":"Artificial neural networks for urban modeling","author":"Yang","year":"2009"},{"key":"10.1016\/j.ecoinf.2022.101955_bb0425","doi-asserted-by":"crossref","first-page":"5064","DOI":"10.3390\/rs13245064","article-title":"Testing accuracy of land cover classification algorithms in the qilian mountains based on GEE cloud platform","volume":"13","author":"Yang","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0430","doi-asserted-by":"crossref","first-page":"302","DOI":"10.3390\/ijgi2020302","article-title":"Identifying land use\/cover dynamics in the Koga catchment, Ethiopia, from multi-scale data, and implications for environmental change","volume":"2","author":"Yeshaneh","year":"2012","journal-title":"ISPRS Int. J. Geo Inf."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0435","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1038\/s41598-018-36225-2","article-title":"Effects of land cover change on great apes distribution at the lobeke national park and its surrounding forest management units, South-East Cameroon. A 13-year time series analysis","volume":"9","author":"Yuh","year":"2019","journal-title":"Sci. Rep."},{"issue":"14","key":"10.1016\/j.ecoinf.2022.101955_bb0445","doi-asserted-by":"crossref","first-page":"5843","DOI":"10.1109\/JSEN.2019.2904137","article-title":"A machine learning-based approach for land cover change detection using remote sensing and radiometric measurements","volume":"19","author":"Zerrouki","year":"2019","journal-title":"IEEE Sensors J."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0450","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.rse.2017.05.024","article-title":"Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification","volume":"197","author":"Zhang","year":"2017","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101955_bb0455","doi-asserted-by":"crossref","first-page":"12076","DOI":"10.3390\/rs70912076","article-title":"Multi-temporal landsat images and ancillary data for land use\/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa","volume":"7","author":"Zoungrana","year":"2015","journal-title":"Remote Sens."}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122004058?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122004058?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T17:38:08Z","timestamp":1716831488000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574954122004058"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":87,"alternative-id":["S1574954122004058"],"URL":"https:\/\/doi.org\/10.1016\/j.ecoinf.2022.101955","relation":{},"ISSN":["1574-9541"],"issn-type":[{"value":"1574-9541","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Application of machine learning approaches for land cover monitoring in northern Cameroon","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2022.101955","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"101955"}}