{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T04:12:23Z","timestamp":1728619943404},"reference-count":90,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.ecoinf.2022.101951","type":"journal-article","created":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T16:24:33Z","timestamp":1670689473000},"page":"101951","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, T\u00fcrkiye"],"prefix":"10.1016","volume":"74","author":[{"given":"Sinan","family":"Bulut","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2022.101951_bb0005","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1016\/j.ecolmodel.2010.01.007","article-title":"Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests","volume":"221","author":"Aertsen","year":"2010","journal-title":"Ecol. Model."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0010","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1002\/wics.84","article-title":"Multicollinearity. WIREs","volume":"2","author":"Alin","year":"2010","journal-title":"Comput. Stat."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0015","article-title":"Estimating aboveground biomass on private Forest using Sentinel-2 imagery","volume":"2018","author":"Askar Nuthammachot","year":"2018","journal-title":"J. Sensors"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0020","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s10021-008-9221-5","article-title":"Environmental and biotic controls over aboveground biomass throughout a tropical rain Forest","volume":"12","author":"Asner","year":"2009","journal-title":"Ecosystems"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0025","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.rse.2019.01.019","article-title":"Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region","volume":"223","author":"Astola","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0030","doi-asserted-by":"crossref","first-page":"6506","DOI":"10.1073\/pnas.1711842115","article-title":"The biomass distribution on earth","volume":"115","author":"Bar-On","year":"2018","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0035","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1080\/014311698215919","article-title":"Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves","volume":"19","author":"Blackburn","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0040","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1007\/s12517-022-10140-3","article-title":"Evaluating statistical and combine method to predict stand above-ground biomass using remotely sensed data","volume":"15","author":"Bulut","year":"2022","journal-title":"Arab. J. Geosci."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0045","doi-asserted-by":"crossref","first-page":"429","DOI":"10.3390\/rs12030429","article-title":"Monitoring mega-crown leaf turnover from space","volume":"12","author":"Bush","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0050","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/S0034-4257(02)00037-8","article-title":"Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach","volume":"82","author":"Ceccato","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0055","doi-asserted-by":"crossref","first-page":"603","DOI":"10.3390\/rs13040603","article-title":"Estimating pasture biomass using Sentinel-2 imagery and machine learning","volume":"13","author":"Chen","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0060","first-page":"1","article-title":"Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest","volume":"77","author":"Chrysafis","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0065","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/0034-4257(90)90085-Z","article-title":"Calculating the vegetation index faster","volume":"34","author":"Crippen","year":"1990","journal-title":"Remote Sens. Environ."},{"year":"2020","series-title":"R: A Language and Environment for Statistical Computing","author":"Development Core Team R","key":"10.1016\/j.ecoinf.2022.101951_bb0070"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0075","doi-asserted-by":"crossref","DOI":"10.1029\/2021GL095452","article-title":"A global bottom-up approach to estimate fuel consumed by fires using above ground biomass observations","volume":"48","author":"Di Giuseppe","year":"2021","journal-title":"Geophys. Res. Lett."},{"year":"1999","series-title":"Using ArcMap","author":"ESRI","key":"10.1016\/j.ecoinf.2022.101951_bb0080"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2021.101392","article-title":"Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm","volume":"65","author":"Fararoda","year":"2021","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0090","doi-asserted-by":"crossref","first-page":"92","DOI":"10.2307\/1937887","article-title":"Multicollinearity in regression analysis: the problem revisited","volume":"49","author":"Farrar","year":"1967","journal-title":"Rev. Econ. Stat."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0095","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1111\/1365-2745.12346","article-title":"Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses","volume":"103","author":"Finegan","year":"2015","journal-title":"J. Ecol."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0100","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.foreco.2005.08.036","article-title":"Relationships between forest structure and vegetation indices in Atlantic rainforest","volume":"218","author":"Freitas","year":"2005","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v033.i01","article-title":"Regularization paths for generalized linear models via coordinate descent","volume":"33","author":"Friedman","year":"2010","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0110","article-title":"Experimental and numerical investigation of acoustic performance for full-sized SPS","volume":"2022","author":"Gao","year":"2022","journal-title":"Shock. Vib."},{"year":"2008","series-title":"Forest Management Guidelines","author":"GDF","key":"10.1016\/j.ecoinf.2022.101951_bb0115"},{"year":"2016","series-title":"G\u00fcng\u00f6ren and Sar\u0131yayla Planning Unit, Forest Management Plan","author":"GDF","key":"10.1016\/j.ecoinf.2022.101951_bb0120"},{"year":"2004","series-title":"Estimation of above and Belowground Carbon Stocks of Forests: Implications for Sustainable Forest Management and Climate Change Mitigation: A Case Study of Tara Gedam Forest, Ethiopia","author":"Gedefaw","key":"10.1016\/j.ecoinf.2022.101951_bb0125"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0130","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1016\/S0176-1617(96)80284-7","article-title":"Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll","volume":"148","author":"Gitelson","year":"1996","journal-title":"J. Plant Physiol."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0135","doi-asserted-by":"crossref","DOI":"10.1029\/2005GL022688","article-title":"Remote estimation of canopy chlorophyll content in crops","volume":"32","author":"Gitelson","year":"2005","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0140","doi-asserted-by":"crossref","first-page":"1509","DOI":"10.1080\/15481603.2022.2115599","article-title":"Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2\/PALSAR2, and topographic information in Mediterranean forests","volume":"59","author":"Guerra-Hern\u00e1ndez","year":"2022","journal-title":"GISci. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106596","article-title":"Employing artificial neural network for effective biomass prediction: an alternative approach","volume":"192","author":"Guner","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0150","first-page":"289","article-title":"Estimating aboveground biomass using Landsat TM imagery: a case study of Anatolian Crimean pine forests in Turkey","volume":"57","author":"G\u00fcnl\u00fc","year":"2014","journal-title":"Ann. Forest Res."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0155","doi-asserted-by":"crossref","first-page":"1965","DOI":"10.1002\/joc.1276","article-title":"Very high resolution interpolated climate surfaces for global land areas","volume":"25","author":"Hijmans","year":"2005","journal-title":"Int. J. Climatol."},{"issue":"10","key":"10.1016\/j.ecoinf.2022.101951_bb0160","doi-asserted-by":"crossref","first-page":"1690","DOI":"10.3390\/rs12101690","article-title":"Mapping the global mangrove Forest aboveground biomass using multisource remote sensing data","volume":"12","author":"Hu","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0165","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"year":"2012","series-title":"IBM SPSS Statistics 21 Algorithms","author":"IBM SPSS Inc","key":"10.1016\/j.ecoinf.2022.101951_bb0170"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2021.147335","article-title":"Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture","volume":"785","author":"Jiang","year":"2021","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0180","doi-asserted-by":"crossref","first-page":"3583","DOI":"10.1080\/014311697216810","article-title":"The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data","volume":"18","author":"Jurgens","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0185","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1109\/36.134076","article-title":"Atmospherically resistant vegetation index (ARVI) for EOS-MODIS","volume":"30","author":"Kaufman","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0190","doi-asserted-by":"crossref","first-page":"586","DOI":"10.3390\/f12050586","article-title":"Assessment of above-ground biomass in Pakistan Forest Ecosystem\u2019s carbon Pool: a review","volume":"12","author":"Khan","year":"2021","journal-title":"Forests"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0195","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.biombioe.2019.01.045","article-title":"A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data","volume":"122","author":"Ku","year":"2019","journal-title":"Biomass Bioenergy"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.108244","article-title":"@ variation in biomass and nutrients allocation of Corydalis hendersonii on the Tibetan plateau with increasing rainfall continentality and altitude","volume":"132","author":"Li","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0205","doi-asserted-by":"crossref","first-page":"9952","DOI":"10.1038\/s41598-020-67024-3","article-title":"Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms","volume":"10","author":"Li","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0210","doi-asserted-by":"crossref","first-page":"128124","DOI":"10.1109\/ACCESS.2020.3008686","article-title":"Combining kriging interpolation to improve the accuracy of Forest aboveground biomass estimation using remote sensing data","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0215","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1109\/TGRS.1995.8746027","article-title":"A feedback based modification of the NDVI to minimize canopy background and atmospheric noise","volume":"33","author":"Liu","year":"1995","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2022.113172","article-title":"Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data","volume":"280","author":"Liu","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0225","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.isprsjprs.2019.03.016","article-title":"Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery","volume":"151","author":"Liu","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0230","doi-asserted-by":"crossref","first-page":"369","DOI":"10.3390\/rs8050369","article-title":"Evaluation of radiometric and atmospheric correction algorithms for aboveground Forest biomass estimation using Landsat 5 TM data","volume":"8","author":"L\u00f3pez-Serrano","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0235","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3390\/f11010011","article-title":"Modeling of aboveground biomass with Landsat 8 OLI and machine learning in temperate forests","volume":"11","author":"L\u00f3pez-Serrano","year":"2020","journal-title":"Forests"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0240","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1080\/10106040108542184","article-title":"Spatially located platform and aerial photography for documentation of grazing impacts on wheat","volume":"16","author":"Louhaichi","year":"2001","journal-title":"Geocarto Int."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0245","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.foreco.2004.03.048","article-title":"Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin","volume":"198","author":"Lu","year":"2004","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0250","doi-asserted-by":"crossref","first-page":"932","DOI":"10.1080\/22797254.2018.1521250","article-title":"Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images","volume":"51","author":"Macedo","year":"2018","journal-title":"European J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0255","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1080\/00401706.1970.10488699","article-title":"Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation","volume":"12","author":"Marquaridt","year":"1970","journal-title":"Technometrics"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0260","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The use of the normalized difference water index (NDWI) in the delineation of open water features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"year":"2015","series-title":"Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071)","author":"Meyer","key":"10.1016\/j.ecoinf.2022.101951_bb0265"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0270","doi-asserted-by":"crossref","DOI":"10.1016\/j.foreco.2021.119462","article-title":"Above-ground biomass storage potential in primary rain forests managed for timber production in Costa Rica","volume":"497","author":"Morrison Vila","year":"2021","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0275","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.3390\/rs13071282","article-title":"Prediction of Forest aboveground biomass using multitemporal multispectral remote sensing data","volume":"13","author":"Naik","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0280","first-page":"506","article-title":"Estimation of above-ground mangrove biomass using Landsat-8 data- derived vegetation indices: a case study in Quang Ninh Province, Vietnam","volume":"5","author":"Nguyen","year":"2021","journal-title":"For. Soc."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0285","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/0034-4257(84)90013-0","article-title":"Functional equivalence of spectral vegetation indices","volume":"14","author":"Perry","year":"1984","journal-title":"Remote Sens. Environ."},{"issue":"6","key":"10.1016\/j.ecoinf.2022.101951_bb0290","doi-asserted-by":"crossref","first-page":"1022","DOI":"10.3390\/sym12061022","article-title":"Performance evaluation of machine learning methods for Forest fire modeling and prediction","volume":"12","author":"Pham","year":"2020","journal-title":"Symmetry"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0295","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1007\/s11676-019-01089-3","article-title":"Carbon sink potential and allocation in above- and below-ground biomass in willow coppice","volume":"32","author":"Pietrzykowski","year":"2021","journal-title":"J. For. Res."},{"issue":"5","key":"10.1016\/j.ecoinf.2022.101951_bb0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2009.12.018","article-title":"Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches","volume":"114","author":"Powell","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0305","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.rse.2007.01.009","article-title":"Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images","volume":"109","author":"Proisy","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0310","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111501","article-title":"Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data","volume":"236","author":"Puliti","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0315","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112644","article-title":"Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat","volume":"265","author":"Puliti","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0320","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2014.04.012","article-title":"Effect of field plot location on estimating tropical forest above-ground biomass in Nepal using airborne laser scanning data","volume":"94","author":"Rana","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0325","doi-asserted-by":"crossref","first-page":"804","DOI":"10.1016\/j.oregeorev.2015.01.001","article-title":"Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines","volume":"71","author":"Rodriguez-Galiano","year":"2015","journal-title":"Ore Geol. Rev."},{"year":"1974","series-title":"Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (No. E75-10354)","author":"Rouse","key":"10.1016\/j.ecoinf.2022.101951_bb0330"},{"year":"2015","series-title":"Yield research in Calabrian pine (Pinus brutia ten.) stands of Mersin region. Artvin \u00c7oruh University, Doctorate thesis, Artvin, Turkey","author":"\u015eahin","key":"10.1016\/j.ecoinf.2022.101951_bb0335"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0340","doi-asserted-by":"crossref","first-page":"2763","DOI":"10.3390\/rs13142763","article-title":"A validated and accurate method for quantifying and extrapolating mangrove above-ground biomass using LiDAR data","volume":"13","author":"Salum","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0345","doi-asserted-by":"crossref","first-page":"540","DOI":"10.3390\/rs8070540","article-title":"Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region?","volume":"8","author":"Schumacher","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0350","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.112153","article-title":"Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data","volume":"253","author":"Soja","year":"2021","journal-title":"Remote Sens. Environ."},{"year":"2005","series-title":"Determining in-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography (Ph.D.)","author":"Sripada","key":"10.1016\/j.ecoinf.2022.101951_bb0355"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0360","first-page":"457","article-title":"An expression for the effect of aspect, slope, and habitat type on tree growth","volume":"22","author":"Stage","year":"1976","journal-title":"For. Sci."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0365","doi-asserted-by":"crossref","first-page":"3335","DOI":"10.3390\/rs12203335","article-title":"Use of remotely sensed data to enhance estimation of aboveground biomass for the dry Afromontane Forest in south-Central Ethiopia","volume":"12","author":"Taddese","year":"2020","journal-title":"Remote Sens."},{"year":"2020","series-title":"MATLAB User\u2019s Guide","author":"The MathWorks","key":"10.1016\/j.ecoinf.2022.101951_bb0370"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0375","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the Lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B Methodol."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0380","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1016\/j.ajodo.2021.02.005","article-title":"Multicollinearity","volume":"159","author":"Tsagris","year":"2021","journal-title":"Am. J. Orthod. Dentofac. Orthop."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0385","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1080\/10106049.2020.1737971","article-title":"Estimating aboveground biomass using Landsat 8 OLI satellite image in pure Crimean pine (Pinus nigra J.F. Arnold subsp. pallasiana (lamb.) Holmboe) stands: a case from Turkey","volume":"37","author":"Turgut","year":"2022","journal-title":"Geocarto Int."},{"author":"USGS","key":"10.1016\/j.ecoinf.2022.101951_bb0390"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0395","article-title":"Modelling above ground biomass of Indian mangrove forest using dual-pol SAR data","volume":"21","author":"Vaghela","year":"2021","journal-title":"Remote Sens. Appl.-Soc. Environ."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0400","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1186\/s13021-014-0008-z","article-title":"Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for north and East Kalimantan, Borneo","volume":"9","author":"Van der Laan","year":"2014","journal-title":"Carbon Balance Manage"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0405","series-title":"Papers presented at the 6th European Conference on Precision Agriculture, Skiathos, Greece, 3-6 June, 2007 189\u2013196","article-title":"Comparison of narrow-band and broad-band vegetation indices for canopy chlorophyll density estimation in sugar beet. Precision agriculture \u201807","author":"Vincini","year":"2007"},{"key":"10.1016\/j.ecoinf.2022.101951_bb0410","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S1672-6308(07)60027-4","article-title":"New vegetation index and its application in estimating leaf area index of Rice","volume":"14","author":"Wang","year":"2007","journal-title":"Rice Sci."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0415","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1016\/j.jenvman.2018.11.130","article-title":"Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl River Delta, South China","volume":"232","author":"Wang","year":"2019","journal-title":"J. Environ. Manag."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0420","doi-asserted-by":"crossref","DOI":"10.1016\/j.matdes.2021.110181","article-title":"Machine learning prediction of mechanical properties of braided-textile reinforced tubular structures","volume":"212","author":"Wang","year":"2021","journal-title":"Mater. Des."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0425","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.agrformet.2014.09.010","article-title":"Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the mu us Sandy land, China","volume":"200","author":"Yan","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0430","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.107948","article-title":"Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms","volume":"129","author":"Ye","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0435","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.3390\/rs11121459","article-title":"Deep learning based retrieval of Forest aboveground biomass from combined LiDAR and Landsat 8 data","volume":"11","author":"Zhang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0440","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.foreco.2018.12.019","article-title":"Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments","volume":"434","author":"Zhao","year":"2019","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0445","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.isprsjprs.2014.08.014","article-title":"Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series","volume":"102","author":"Zhu","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2022.101951_bb0450","doi-asserted-by":"crossref","first-page":"12192","DOI":"10.3390\/rs70912192","article-title":"Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images","volume":"7","author":"Zhu","year":"2015","journal-title":"Remote Sens."}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122004010?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954122004010?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T05:19:46Z","timestamp":1728537586000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574954122004010"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":90,"alternative-id":["S1574954122004010"],"URL":"https:\/\/doi.org\/10.1016\/j.ecoinf.2022.101951","relation":{},"ISSN":["1574-9541"],"issn-type":[{"type":"print","value":"1574-9541"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, T\u00fcrkiye","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2022.101951","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101951"}}