{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T12:08:30Z","timestamp":1727266110414},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100006641","name":"UNICEF","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006641","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"National Council for Scientific and Technological Development","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Ecological Informatics"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.ecoinf.2021.101302","type":"journal-article","created":{"date-parts":[[2021,4,16]],"date-time":"2021-04-16T11:54:17Z","timestamp":1618574057000},"page":"101302","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutional neural networks"],"prefix":"10.1016","volume":"63","author":[{"given":"Matheus Pinheiro","family":"Ferreira","sequence":"first","affiliation":[]},{"given":"Rodolfo Georjute","family":"Lotte","sequence":"additional","affiliation":[]},{"given":"Francisco V.","family":"D'Elia","sequence":"additional","affiliation":[]},{"given":"Christos","family":"Stamatopoulos","sequence":"additional","affiliation":[]},{"given":"Do-Hyung","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Adam R.","family":"Benjamin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ecoinf.2021.101302_bb0005","doi-asserted-by":"crossref","first-page":"117795","DOI":"10.1016\/j.foreco.2019.117795","article-title":"Genetic diversity of brazil nut tree (Bertholletia excelsa bonpl.) in southern brazilian amazon","volume":"458","author":"Baldoni","year":"2020","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0010","doi-asserted-by":"crossref","first-page":"1953","DOI":"10.1007\/s00468-016-1424-3","article-title":"Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas","volume":"30","author":"Blanchard","year":"2016","journal-title":"Trees"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0015","first-page":"12","article-title":"Tree crown delineation algorithm based on a convolutional neural network","author":"Braga","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0020","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0025","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"801","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0030","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.foreco.2018.02.014","article-title":"Primary and secondary dispersal of Bertholletia excelsa: implications for sustainable harvests","volume":"415-416","author":"de Oliveira Wadt","year":"2018","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0035","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: a large-scale hierarchical image database","author":"Deng","year":"2009"},{"year":"2019","series-title":"QGIS Geographic Information System","author":"Development Team","key":"10.1016\/j.ecoinf.2021.101302_bb0040"},{"year":"2016","series-title":"Radiometric Use of WorldView-3 Imagery","author":"DigitalGlobe","key":"10.1016\/j.ecoinf.2021.101302_bb0045"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0050","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1080\/01431161.2019.1681604","article-title":"Oil palm plantation mapping from high-resolution remote sensing images using deep learning","volume":"41","author":"Dong","year":"2020","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0055","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.isprsjprs.2019.01.019","article-title":"Tree species classification in tropical forests using visible to shortwave infrared worldview-3 images and texture analysis","volume":"149","author":"Ferreira","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0060","doi-asserted-by":"crossref","first-page":"118397","DOI":"10.1016\/j.foreco.2020.118397","article-title":"Individual tree detection and species classification of amazonian palms using uav images and deep learning","volume":"475","author":"Ferreira","year":"2020","journal-title":"For. Ecol. Manag."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0065","doi-asserted-by":"crossref","DOI":"10.3390\/rs11192326","article-title":"A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery","volume":"11","author":"Fricker","year":"2019","journal-title":"Remote Sens."},{"year":"1983","series-title":"Image Sharpening for Mixed Spatial and Spectral Resolution Satellite Systems","author":"Hallada","key":"10.1016\/j.ecoinf.2021.101302_bb0070"},{"year":"1978","series-title":"Tropical Trees and Forests: An Architectural Analysis","author":"Hall\u00e9","key":"10.1016\/j.ecoinf.2021.101302_bb0075"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0080","doi-asserted-by":"crossref","first-page":"1284","DOI":"10.3390\/s19061284","article-title":"Urban tree species classification using a worldview-2\/3 and lidar data fusion approach and deep learning","volume":"19","author":"Hartling","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0085","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0090","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1002\/rse2.7","article-title":"Will remote sensing shape the next generation of species distribution models?","volume":"1","author":"He","year":"2015","journal-title":"Rem. Sens. Ecol. Conserv."},{"author":"IBGE","key":"10.1016\/j.ecoinf.2021.101302_bb0095"},{"author":"IBGE","key":"10.1016\/j.ecoinf.2021.101302_bb0100"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0105","doi-asserted-by":"crossref","DOI":"10.3390\/drones5010021","article-title":"Of course we fly unmanned\u2014we\u2019re women!","volume":"5","author":"Joyce","year":"2021","journal-title":"Drones"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0110","doi-asserted-by":"crossref","first-page":"3218","DOI":"10.3390\/f6093218","article-title":"Accuracy of kinematic positioning using global satellite navigation systems under forest canopies","volume":"6","author":"Kaartinen","year":"2015","journal-title":"Forests"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0115","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2020.12.010","article-title":"Review on convolutional neural networks (cnn) in vegetation remote sensing","volume":"173","author":"Kattenborn","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0120","doi-asserted-by":"crossref","first-page":"22","DOI":"10.3390\/rs9010022","article-title":"Deep learning based oil palm tree detection and counting for high-resolution remote sensing images","volume":"9","author":"Li","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0125","doi-asserted-by":"crossref","first-page":"68716","DOI":"10.1109\/ACCESS.2018.2880083","article-title":"Deep learning for fusion of apex hyperspectral and full-waveform lidar remote sensing data for tree species mapping","volume":"6","author":"Liao","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0130","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1080\/08839514.2020.1831226","article-title":"Automatic detection of oil palm tree from uav images based on the deep learning method","volume":"35","author":"Liu","year":"2021","journal-title":"Appl. Artif. Intell."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0135","doi-asserted-by":"crossref","first-page":"563","DOI":"10.3390\/s20020563","article-title":"Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution uav optical imagery","volume":"20","author":"Lobo Torres","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0140","series-title":"Technical Report","article-title":"Official list of the threatened species of the flora of Brazil (Portaria n. 443, de 17 de dezembro de 2014, pp. 110\u2013121)","author":"MMA","year":"2019"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0145","doi-asserted-by":"crossref","DOI":"10.3390\/f9120736","article-title":"Automatic segmentation of Mauritia flexuosa in unmanned aerial vehicle (uav) imagery using deep learning","volume":"9","author":"Morales","year":"2018","journal-title":"Forests"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0150","first-page":"130","article-title":"Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa humb. & bonpl.: Lecythidaceae)","author":"Mori","year":"1990","journal-title":"Adv. Econ. Bot."},{"year":"2012","series-title":"Machine Learning: A Probabilistic Perspective","author":"Murphy","key":"10.1016\/j.ecoinf.2021.101302_bb0155"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0160","doi-asserted-by":"crossref","DOI":"10.3390\/rs12071070","article-title":"Tree species classification of drone hyperspectral and rgb imagery with deep learning convolutional neural networks","volume":"12","author":"Nezami","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-79653-9","article-title":"Explainable identification and mapping of trees using uav rgb image and deep learning","volume":"11","author":"Onishi","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0170","doi-asserted-by":"crossref","first-page":"71","DOI":"10.14419\/ijet.v6i3.7702","article-title":"Influence of the weights in ihs and brovey methods for pan-sharpening worldview-3 satellite images","volume":"6","author":"Parente","year":"2017","journal-title":"Int. J. Eng. Technol."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0175","doi-asserted-by":"crossref","first-page":"2112","DOI":"10.1126\/science.1091698","article-title":"Demographic threats to the sustainability of Brazil nut exploitation","volume":"302","author":"Peres","year":"2003","journal-title":"Science"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0102187","article-title":"Anthropogenic landscape in southeastern Amazonia: contemporary impacts of low-intensity harvesting and dispersal of Brazil nuts by the kayap\u00f3 indigenous people","volume":"9","author":"Ribeiro","year":"2014","journal-title":"PLoS One"},{"year":"2000","series-title":"Povos indgenas no Brasil: 1996\/2000","author":"Ricardo","key":"10.1016\/j.ecoinf.2021.101302_bb0185"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0190","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0195","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1111\/geb.13200","article-title":"Climate change drives spatial mismatch and threatens the biotic interactions of the Brazil nut","volume":"30","author":"Sales","year":"2021","journal-title":"Glob. Ecol. Biogeogr."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0200","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1590\/S0044-59672004000300009","article-title":"Tree species diversity in a seasonally-dry forest: the case of the pinkait site, in the kayap\u00f3 indigenous area, southeastern limits of the amazon","volume":"34","author":"Salm","year":"2004","journal-title":"Acta Amazon."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0205","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4510","article-title":"Mobilenetv2: inverted residuals and linear bottlenecks","author":"Sandler","year":"2018"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0210","doi-asserted-by":"crossref","first-page":"3595","DOI":"10.3390\/s19163595","article-title":"Assessment of cnn-based methods for individual tree detection on images captured by rgb cameras attached to uavs","volume":"19","author":"Santos","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0215","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.isprsjprs.2020.10.015","article-title":"Mapping forest tree species in high resolution uav-based rgb-imagery by means of convolutional neural networks","volume":"170","author":"Schiefer","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0220","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1007\/s10745-011-9412-0","article-title":"Population structure of Brazil nut (Bertholletia excelsa, lecythidaceae) stands in two areas with different occupation histories in the brazilian amazon","volume":"39","author":"Scoles","year":"2011","journal-title":"Hum. Ecol."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0225","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1080\/15481603.2020.1712102","article-title":"Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data","volume":"57","author":"Sothe","year":"2020","journal-title":"GISci. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0230","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1016\/j.rse.2014.12.020","article-title":"On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images","volume":"159","author":"Tochon","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0235","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1080\/22797254.2018.1434424","article-title":"Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data","volume":"51","author":"Trier","year":"2018","journal-title":"Eur. J. Rem. Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0240","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.isprsjprs.2018.09.013","article-title":"Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images","volume":"145","author":"Wagner","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0245","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1002\/rse2.111","article-title":"Using the u-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images","volume":"5","author":"Wagner","year":"2019","journal-title":"Rem. Sens. Ecol. Conserv."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0229448","article-title":"Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network","volume":"15","author":"Wagner","year":"2020","journal-title":"PLoS One"},{"key":"10.1016\/j.ecoinf.2021.101302_bb0255","doi-asserted-by":"crossref","DOI":"10.3390\/rs12142225","article-title":"Regional mapping and spatial distribution analysis of canopy palms in an amazon forest using deep learning and vhr images","volume":"12","author":"Wagner","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0260","doi-asserted-by":"crossref","first-page":"101061","DOI":"10.1016\/j.ecoinf.2020.101061","article-title":"Cross-site learning in deep learning rgb tree crown detection","volume":"56","author":"Weinstein","year":"2020","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0265","first-page":"1","article-title":"Tree species classification using deep learning and rgb optical images obtained by an unmanned aerial vehicle","author":"Zhang","year":"2020","journal-title":"J. For. Res."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0270","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MGRS.2016.2540798","article-title":"Deep learning for remote sensing data: a technical tutorial on the state of the art","volume":"4","author":"Zhang","year":"2016","journal-title":"IEEE Geosci. Rem. Sens. Magaz."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0275","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.isprsjprs.2020.07.002","article-title":"Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network","volume":"167","author":"Zheng","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0280","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.isprsjprs.2021.01.008","article-title":"Growing status observation for oil palm trees using unmanned aerial vehicle (uav) images","volume":"173","author":"Zheng","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ecoinf.2021.101302_bb0285","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1017\/S0376892901000029","article-title":"Conservation and development alliances with the kayap\u00f3 of South-Eastern Amazonia, a tropical forest indigenous people","author":"Zimmerman","year":"2001","journal-title":"Environ. Conserv."}],"updated-by":[{"updated":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"DOI":"10.1016\/j.ecoinf.2021.101326","type":"erratum","label":"Erratum"}],"container-title":["Ecological Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954121000935?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574954121000935?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T17:39:30Z","timestamp":1681580370000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574954121000935"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":57,"alternative-id":["S1574954121000935"],"URL":"https:\/\/doi.org\/10.1016\/j.ecoinf.2021.101302","relation":{},"ISSN":["1574-9541"],"issn-type":[{"type":"print","value":"1574-9541"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutional neural networks","name":"articletitle","label":"Article Title"},{"value":"Ecological Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ecoinf.2021.101302","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101302"}}