{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T02:08:35Z","timestamp":1725588515292},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Decision Support Systems"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.dss.2021.113648","type":"journal-article","created":{"date-parts":[[2021,7,13]],"date-time":"2021-07-13T23:49:15Z","timestamp":1626220155000},"page":"113648","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Uplift modeling with value-driven evaluation metrics"],"prefix":"10.1016","volume":"150","author":[{"given":"Robin M.","family":"Gubela","sequence":"first","affiliation":[]},{"given":"Stefan","family":"Lessmann","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.dss.2021.113648_bb0005","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1509\/jmr.16.0163","article-title":"Retention futility: targeting high risk customers might be ineffective","volume":"55","author":"Ascarza","year":"2018","journal-title":"J. Mark. Res."},{"key":"10.1016\/j.dss.2021.113648_bb0010","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/j.ins.2019.12.075","article-title":"Why you should stop predicting customer churn and start using uplift models","volume":"548","author":"Devriendt","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.dss.2021.113648_bb0015","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.ins.2019.05.027","article-title":"Targeting customers for profit: an ensemble learning framework to support marketing decision-making","volume":"557","author":"Lessmann","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.dss.2021.113648_bb0020","doi-asserted-by":"crossref","first-page":"113320","DOI":"10.1016\/j.dss.2020.113320","article-title":"Uplift modeling for preventing student dropout in higher education","volume":"134","author":"Olaya","year":"2020","journal-title":"Decis. Support. Syst."},{"issue":"1","key":"10.1016\/j.dss.2021.113648_bb0025","first-page":"134","article-title":"Machine learning estimation of heterogeneous causal effects: empirical Monte Carlo evidence","volume":"24","author":"Knaus","year":"2021","journal-title":"Econ. J."},{"issue":"523","key":"10.1016\/j.dss.2021.113648_bb0030","doi-asserted-by":"crossref","first-page":"1228","DOI":"10.1080\/01621459.2017.1319839","article-title":"Estimation and inference of heterogeneous treatment effects using random forests","volume":"113","author":"Wager","year":"2018","journal-title":"J. Am. Stat. Assoc."},{"issue":"2","key":"10.1016\/j.dss.2021.113648_bb0035","doi-asserted-by":"crossref","first-page":"1148","DOI":"10.1214\/18-AOS1709","article-title":"Generalized random forests","volume":"47","author":"Athey","year":"2019","journal-title":"Ann. Stat."},{"issue":"10","key":"10.1016\/j.dss.2021.113648_bb0040","doi-asserted-by":"crossref","first-page":"4156","DOI":"10.1073\/pnas.1804597116","article-title":"Metalearners for estimating heterogeneous treatment effects using machine learning","volume":"116","author":"K\u00fcnzel","year":"2019","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.dss.2021.113648_bb0045","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.dss.2015.01.010","article-title":"A decision support framework to implement optimal personalized marketing interventions","volume":"72","author":"Guelman","year":"2015","journal-title":"Decis. Support. Syst."},{"key":"10.1016\/j.dss.2021.113648_bb0050","series-title":"Proceedings of the 3rd International Conference on Predictive Applications and APIs","first-page":"1","article-title":"Causal inference and uplift modelling: a review of the literature","volume":"67","author":"Gutierrez","year":"2017"},{"issue":"1","key":"10.1016\/j.dss.2021.113648_bb0055","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1089\/big.2017.0104","article-title":"A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: a stepping stone toward the development of prescriptive analytics","volume":"6","author":"Devriendt","year":"2018","journal-title":"Big Data"},{"key":"10.1016\/j.dss.2021.113648_bb0060","first-page":"14","article-title":"Using control groups to target on predicted lift: building and assessing uplift models","volume":"1","author":"Radcliffe","year":"2007","journal-title":"Direct Market. Anal. J."},{"issue":"5","key":"10.1016\/j.dss.2021.113648_bb0065","doi-asserted-by":"crossref","first-page":"956","DOI":"10.1287\/mksc.2020.1229","article-title":"Managing churn to maximize profits","volume":"39","author":"Lemmens","year":"2020","journal-title":"Mark. Sci."},{"key":"10.1016\/j.dss.2021.113648_bb0070","doi-asserted-by":"crossref","first-page":"113077","DOI":"10.1016\/j.dss.2019.113077","article-title":"Reducing inferior member community participation using uplift modeling: evidence from a field experiment","volume":"123","author":"Debaere","year":"2019","journal-title":"Decis. Support. Syst."},{"key":"10.1016\/j.dss.2021.113648_bb0075","series-title":"IEEE Transactions on Knowledge and Data Engineering","article-title":"Learning to rank for uplift modeling","author":"Devriendt","year":"2020"},{"issue":"1","key":"10.1016\/j.dss.2021.113648_bb0080","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.ejor.2011.09.031","article-title":"New insights into churn prediction in the telecommunication sector: a profit driven data mining approach","volume":"218","author":"Verbeke","year":"2012","journal-title":"Eur. J. Oper. Res."},{"issue":"4","key":"10.1016\/j.dss.2021.113648_bb0085","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1057\/jma.2014.18","article-title":"Mining for the truly responsive customers and prospects using true-lift modeling: comparison of new and existing methods","volume":"2","author":"Kane","year":"2014","journal-title":"J. Market. Anal."},{"key":"10.1016\/j.dss.2021.113648_bb0090","series-title":"Revenue Uplift Modeling, Proceedings of the 38th International Conference on Information Systems (ICIS'17)","author":"Gubela","year":"2017"},{"issue":"3","key":"10.1016\/j.dss.2021.113648_bb0095","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1142\/S0219622019500172","article-title":"Conversion uplift in e-commerce: a systematic benchmark of modeling strategies","volume":"18","author":"Gubela","year":"2019","journal-title":"Int. J. Inf. Technol. Decis. Mak."},{"key":"10.1016\/j.dss.2021.113648_bb0100","series-title":"Affordable Uplift: Supervised Randomization in Controlled Experiments, Proceedings of the 40th International Conference on Information Systems (ICIS'19)","author":"Haupt","year":"2019"},{"issue":"1","key":"10.1016\/j.dss.2021.113648_bb0105","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1257\/jel.47.1.5","article-title":"Recent developments in the econometrics of program evaluation","volume":"47","author":"Imbens","year":"2009","journal-title":"J. Econ. Lit."},{"issue":"2","key":"10.1016\/j.dss.2021.113648_bb0110","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1016\/j.ejor.2019.11.030","article-title":"Response transformation and profit decomposition for revenue uplift modeling","volume":"283","author":"Gubela","year":"2020","journal-title":"Eur. J. Oper. Res."},{"issue":"3\u20134","key":"10.1016\/j.dss.2021.113648_bb0115","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1080\/01969722.2015.1012892","article-title":"Uplift random forests","volume":"46","author":"Guelman","year":"2015","journal-title":"Cybern. Syst."},{"key":"10.1016\/j.dss.2021.113648_bb0120","series-title":"arXiv preprint arXiv:2007.12582v5","article-title":"The foundations of cost-sensitive causal classification","author":"Verbeke","year":"2021"},{"key":"10.1016\/j.dss.2021.113648_bb0125","series-title":"To do or not to do: Cost-sensitive causal decision-making, arXiv preprint arXiv:2101.01407v1","author":"Olaya","year":"2021"},{"issue":"3\u20134","key":"10.1016\/j.dss.2021.113648_bb0130","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1080\/0267257X.2020.1739446","article-title":"On realizing the utopian potential of big data analytics for maximizing return on marketing investments","volume":"36","author":"Benoit","year":"2020","journal-title":"J. Mark. Manag."},{"key":"10.1016\/j.dss.2021.113648_bb0135","series-title":"UB Riskcenter Working Paper Series, 2014\/06","article-title":"Optimal personalized treatment rules for marketing interventions: a review of methods, a new proposal, and an insurance case study","author":"Guelman","year":"2014"},{"issue":"2","key":"10.1016\/j.dss.2021.113648_bb0140","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s10115-011-0434-0","article-title":"Decision trees for uplift modeling with single and multiple treatments","volume":"32","author":"Rzepakowski","year":"2012","journal-title":"Knowl. Inf. Syst."},{"issue":"6","key":"10.1016\/j.dss.2021.113648_bb0145","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1007\/s10618-014-0383-9","article-title":"Ensemble methods for uplift modeling","volume":"29","author":"So\u0142tys","year":"2015","journal-title":"Data Min. Knowl. Disc."},{"issue":"4","key":"10.1016\/j.dss.2021.113648_bb0150","doi-asserted-by":"crossref","first-page":"954","DOI":"10.1093\/biomet\/87.4.954","article-title":"A new family of power transformations to improve normality or symmetry","volume":"87","author":"Yeo","year":"2000","journal-title":"Biometrika"},{"key":"10.1016\/j.dss.2021.113648_bb0155","series-title":"The MineThatData E-Mail Analytics and Data Mining Challenge","author":"Hillstrom","year":"2008"},{"issue":"2","key":"10.1016\/j.dss.2021.113648_bb0160","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1145\/772862.772872","article-title":"The true lift model: a novel data mining approach to response modeling in database marketing","volume":"4","author":"Lo","year":"2002","journal-title":"ACM SIGKDD Explor. Newslett."}],"container-title":["Decision Support Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167923621001585?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167923621001585?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T16:01:09Z","timestamp":1673280069000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167923621001585"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":32,"alternative-id":["S0167923621001585"],"URL":"https:\/\/doi.org\/10.1016\/j.dss.2021.113648","relation":{},"ISSN":["0167-9236"],"issn-type":[{"value":"0167-9236","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Uplift modeling with value-driven evaluation metrics","name":"articletitle","label":"Article Title"},{"value":"Decision Support Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dss.2021.113648","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"113648"}}