{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:59:46Z","timestamp":1740106786399,"version":"3.37.3"},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62371456"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.dsp.2024.104596","type":"journal-article","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T16:33:04Z","timestamp":1716827584000},"page":"104596","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Automatic reconstruction of radar pulse repetition pattern based on model learning"],"prefix":"10.1016","volume":"152","author":[{"ORCID":"https:\/\/orcid.org\/0009-0005-9661-430X","authenticated-orcid":false,"given":"Zhenghao","family":"Luo","sequence":"first","affiliation":[]},{"given":"Shuo","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Wenxiu","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Zhangmeng","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2006","series-title":"ELINT: The Interception and Analysis of Radar Signals, Artech House Radar Library","author":"Wiley","key":"10.1016\/j.dsp.2024.104596_br0010"},{"issue":"5","key":"10.1016\/j.dsp.2024.104596_br0020","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1049\/rsn2.12053","article-title":"Automatic pulse repetition pattern reconstruction of conventional radars","volume":"15","author":"Liu","year":"2021","journal-title":"IET Radar Sonar Navig."},{"issue":"2","key":"10.1016\/j.dsp.2024.104596_br0030","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1109\/TAES.2019.2925447","article-title":"Online pulse deinterleaving with finite automata","volume":"56","author":"Liu","year":"2020","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"10.1016\/j.dsp.2024.104596_br0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103874","article-title":"Robust Bayesian attention belief network for radar work mode recognition","volume":"133","author":"Du","year":"2023","journal-title":"Digit. Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2024.104596_br0050","first-page":"72","article-title":"A PRI estimation and signal deinterleaving method based on density-based clustering","volume":"24","author":"Wang","year":"2024","journal-title":"Int. J. Inf. Commun. Technol."},{"key":"10.1016\/j.dsp.2024.104596_br0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2023.104081","article-title":"Joint recognition and parameter estimation of cognitive radar work modes with LSTM-transformer","volume":"140","author":"Zhang","year":"2023","journal-title":"Digit. Signal Process."},{"issue":"4","key":"10.1016\/j.dsp.2024.104596_br0070","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1049\/ip-f-2.1989.0025","article-title":"New techniques for the deinterleaving of repetitive sequences","volume":"136","author":"Mardia","year":"1989","journal-title":"IEE Proc. F, Commun. Radar Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2024.104596_br0080","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1049\/ip-f-2.1992.0012","article-title":"Improved algorithm for the deinterleaving of radar pulses","volume":"139","author":"Milojevi\u0107","year":"1992","journal-title":"IEE Proc. F, Commun. Radar Signal Process."},{"key":"10.1016\/j.dsp.2024.104596_br0090","series-title":"IEEE International Conference on Acoustics Speech and Signal Processing, vol. 4","first-page":"73","article-title":"Special purpose correlation functions for improved signal detection and parameter estimation","author":"Nelson","year":"1993"},{"issue":"1","key":"10.1016\/j.dsp.2024.104596_br0100","doi-asserted-by":"crossref","DOI":"10.1049\/sil2.12162","article-title":"A novel method for deinterleaving radar signals: first-order difference curve based on sorted TOA difference sequence","volume":"17","author":"Xie","year":"2023","journal-title":"IET Signal Process."},{"issue":"13","key":"10.1016\/j.dsp.2024.104596_br0110","doi-asserted-by":"crossref","first-page":"2888","DOI":"10.3390\/electronics12132888","article-title":"An algorithm for sorting staggered PRI signals based on the congruence transform","volume":"12","author":"Dong","year":"2023","journal-title":"Electronics"},{"key":"10.1016\/j.dsp.2024.104596_br0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2023.104162","article-title":"A radar pulse train deinterleaving method for missing and short observations","volume":"141","author":"Guo","year":"2023","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.dsp.2024.104596_br0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2023.106415","article-title":"Pulse repetition interval modulation recognition using deep CNN evolved by extreme learning machines and IP-based BBO algorithm","volume":"123","author":"Azhdari","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.dsp.2024.104596_br0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.phycom.2023.102237","article-title":"Attention driven CWT-deep learning approach for discrimination of radar PRI modulation","volume":"62","author":"Sharma","year":"2024","journal-title":"Phys. Commun."},{"issue":"11","key":"10.1016\/j.dsp.2024.104596_br0150","first-page":"2069","article-title":"Automatic reconstruction of regular radar pulse repetition patterns based on interleaved pluse train","volume":"37","author":"Kang","year":"2021","journal-title":"J. Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2024.104596_br0160","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1109\/TAES.2022.3187385","article-title":"Reconstruction of radar pulse repetition pattern via semantic coding of intercepted pulse trains","volume":"59","author":"Yuan","year":"2023","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"4","key":"10.1016\/j.dsp.2024.104596_br0170","doi-asserted-by":"crossref","first-page":"1624","DOI":"10.1109\/TAES.2018.2874139","article-title":"Classification, denoising, and deinterleaving of pulse streams with recurrent neural networks","volume":"55","author":"Liu","year":"2019","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"10.1016\/j.dsp.2024.104596_br0180","doi-asserted-by":"crossref","first-page":"5806","DOI":"10.1109\/TSP.2022.3229630","article-title":"A radar signal deinterleaving method based on semantic segmentation with neural network","volume":"70","author":"Chao","year":"2022","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.dsp.2024.104596_br0190","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1109\/TAES.2021.3122411","article-title":"Model-based representation and deinterleaving of mixed radar pulse sequences with neural machine translation network","volume":"58","author":"Zhu","year":"2022","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"9","key":"10.1016\/j.dsp.2024.104596_br0200","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.1049\/iet-rsn.2020.0060","article-title":"Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM","volume":"14","author":"Li","year":"2020","journal-title":"IET Radar Sonar Navig."},{"key":"10.1016\/j.dsp.2024.104596_br0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.phycom.2023.102168","article-title":"Visualization and classification of radar emitter pulse sequences based on 2D feature map","volume":"61","author":"Wang","year":"2023","journal-title":"Phys. Commun."},{"key":"10.1016\/j.dsp.2024.104596_br0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2023.104189","article-title":"Online few-shot learning for multi-function radars mode recognition based on backtracking contextual prototypical memory","volume":"141","author":"Zhai","year":"2023","journal-title":"Digit. Signal Process."},{"year":"2010","series-title":"Grammatical Inference: Learning Automata and Grammars","author":"de la Higuera","key":"10.1016\/j.dsp.2024.104596_br0230"},{"issue":"5","key":"10.1016\/j.dsp.2024.104596_br0240","doi-asserted-by":"crossref","DOI":"10.1007\/s11704-019-9212-z","article-title":"Model learning: a survey of foundations, tools and applications","volume":"15","author":"Ali","year":"2021","journal-title":"Front. Comput. Sci."},{"key":"10.1016\/j.dsp.2024.104596_br0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110326","article-title":"A categorical interpretation of state merging algorithms for DFA inference","volume":"150","author":"Vilar","year":"2024","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.dsp.2024.104596_br0260","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3605360","article-title":"Benchmarking combinations of learning and testing algorithms for automata learning","volume":"36","author":"Aichernig","year":"2024","journal-title":"Form. Asp. Comput."},{"issue":"9","key":"10.1016\/j.dsp.2024.104596_br0270","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1016\/j.patcog.2004.03.027","article-title":"Inference of regular languages using state merging algorithms with search","volume":"38","author":"Bugalho","year":"2005","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.dsp.2024.104596_br0280","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1049\/rsn2.12212","article-title":"Sequential extraction and recognition of pulse group structure for multi-function radar","volume":"16","author":"Kang","year":"2022","journal-title":"IET Radar Sonar Navig."},{"key":"10.1016\/j.dsp.2024.104596_br0290","doi-asserted-by":"crossref","first-page":"106988","DOI":"10.1109\/ACCESS.2022.3211938","article-title":"Extraction and sequential recognition of MFR pulse groups in intercepted pulse trains","volume":"10","author":"Yuan","year":"2022","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.dsp.2024.104596_br0300","doi-asserted-by":"crossref","first-page":"9621","DOI":"10.1109\/TAES.2023.3323443","article-title":"Self-supervised contrastive learning for extracting radar word in the hierarchical model of multifunction radar","volume":"59","author":"Feng","year":"2023","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"3","key":"10.1016\/j.dsp.2024.104596_br0310","doi-asserted-by":"crossref","first-page":"2376","DOI":"10.1109\/TAES.2022.3213792","article-title":"Few-shot recognition of multifunction radar modes via refined prototypical random walk network","volume":"59","author":"Zhai","year":"2023","journal-title":"IEEE Trans. Aerosp. Electron. Syst."}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200424002215?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200424002215?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T05:26:42Z","timestamp":1717306002000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200424002215"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":31,"alternative-id":["S1051200424002215"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2024.104596","relation":{},"ISSN":["1051-2004"],"issn-type":[{"type":"print","value":"1051-2004"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automatic reconstruction of radar pulse repetition pattern based on model learning","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2024.104596","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"104596"}}