{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:11:33Z","timestamp":1732043493014},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100007710","name":"University of Connecticut","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007710","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100008136","name":"Case Western Reserve University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100008136","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.dsp.2024.104590","type":"journal-article","created":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T22:32:06Z","timestamp":1716676326000},"page":"104590","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Rotating machinery fault diagnosis based on parameter-optimized variational mode decomposition"],"prefix":"10.1016","volume":"153","author":[{"ORCID":"http:\/\/orcid.org\/0009-0006-7396-2501","authenticated-orcid":false,"given":"Haoran","family":"Du","sequence":"first","affiliation":[]},{"given":"Jixin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wenjun","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Xunan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2024.104590_bib0001","doi-asserted-by":"crossref","first-page":"4716","DOI":"10.1109\/TIE.2018.2863191","article-title":"Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains","volume":"66","author":"Chen","year":"2019","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.dsp.2024.104590_bib0002","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/acb0ea","article-title":"Bearing fault diagnosis based on inverted Mel-scale frequency cepstral coefficients and deformable convolution networks","volume":"34","author":"Zhao","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0003","doi-asserted-by":"crossref","first-page":"L453","DOI":"10.1088\/0305-4470\/14\/11\/006","article-title":"The mechanism of stochastic resonance","volume":"14","author":"Benzi","year":"1981","journal-title":"J. Phys. A"},{"key":"10.1016\/j.dsp.2024.104590_bib0004","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.cjph.2020.11.015","article-title":"Study on the mean first-passage time and stochastic resonance of a multi-stable system with colored correlated noises","volume":"69","author":"Han","year":"2021","journal-title":"Chinese J. Phys."},{"key":"10.1016\/j.dsp.2024.104590_bib0005","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.ymssp.2018.12.032","article-title":"Applications of stochastic resonance to machinery fault detection: a review and tutorial","volume":"122","author":"Qiao","year":"2019","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109852","article-title":"Stochastic resonance of a high-order-degradation bistable system and its application in fault diagnosis with variable speed condition","volume":"186","author":"Xu","year":"2023","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0007","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1016\/j.ymssp.2010.12.011","article-title":"Application of an improved kurtogram method for fault diagnosis of rolling element bearings","volume":"25","author":"Lei","year":"2011","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0008","article-title":"Cyclogram: an effective method for selecting frequency bands for fault diagnosis of rolling element bearings","volume":"34","author":"Li","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0009","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac97fd","article-title":"Nonlinear fast kurtogram for the extraction of gear fault features with shock interference","volume":"34","author":"Ma","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0010","doi-asserted-by":"crossref","DOI":"10.1115\/1.4041114","article-title":"Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis","volume":"141","author":"Mauricio","year":"2019","journal-title":"J. Eng. Gas. Turbine Power."},{"key":"10.1016\/j.dsp.2024.104590_bib0011","doi-asserted-by":"crossref","first-page":"1695","DOI":"10.1007\/s42417-023-00937-1","article-title":"Wind turbine gearbox fault diagnosis using cyclostationary analysis and interpretable CNN","volume":"12","author":"Amin","year":"2024","journal-title":"J. Vib. Eng. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.110912","article-title":"Motor-current-based electromagnetic interference denoising method for rolling element bearing diagnosis using acoustic emission sensors","volume":"193","author":"Kim","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0013","doi-asserted-by":"crossref","first-page":"714","DOI":"10.1016\/j.jmsy.2020.07.003","article-title":"A spiking neural network-based approach to bearing fault diagnosis","volume":"61","author":"Zuo","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.dsp.2024.104590_bib0014","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac8ca8","article-title":"A self-adaptive multiple-fault diagnosis system for rolling element bearings","volume":"33","author":"Mishra","year":"2022","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2019.107392","article-title":"Rolling bearing fault diagnosis based on improved adaptive parameter less empirical wavelet transform and sparse denoising","volume":"152","author":"Li","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0016","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1017\/S0022112010001217","article-title":"Dynamic mode decomposition of numerical and experimental data","volume":"656","author":"Schmid","year":"2010","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.dsp.2024.104590_bib0017","doi-asserted-by":"crossref","first-page":"e1","DOI":"10.1017\/dce.2022.34","article-title":"Multi-resolution dynamic mode decomposition for damage detection in wind turbine gearboxes","volume":"4","author":"Climaco","year":"2023","journal-title":"DCE"},{"key":"10.1016\/j.dsp.2024.104590_bib0018","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1016\/j.ymssp.2018.06.052","article-title":"Adaptive chirp mode pursuit: algorithm and applications","volume":"116","author":"Chen","year":"2019","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0019","doi-asserted-by":"crossref","DOI":"10.1016\/j.jsv.2019.115065","article-title":"Fault diagnosis of planetary gearbox under variable-speed conditions using an improved adaptive chirp mode decomposition","volume":"468","author":"Chen","year":"2020","journal-title":"J. Sound. Vib."},{"key":"10.1016\/j.dsp.2024.104590_bib0020","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TSP.2013.2288675","article-title":"Variational Mode Decomposition","volume":"62","author":"Dragomiretskiy","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0021","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.isatra.2022.05.037","article-title":"Detection of faults and DG islanding in PV-Wind DC ring bus microgrid by using optimized VMD based improved broad learning system","volume":"131","author":"Anjaiah","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.dsp.2024.104590_bib0022","doi-asserted-by":"crossref","first-page":"5061","DOI":"10.1109\/JSEN.2023.3237600","article-title":"Parameter identification of wheel polygonization based on effective signal extraction and inertial principle","volume":"23","author":"Xie","year":"2023","journal-title":"IEEE Sensors J"},{"key":"10.1016\/j.dsp.2024.104590_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108636","article-title":"Rolling bearing fault diagnosis based on composite multiscale permutation entropy and reverse cognitive fruit fly optimization algorithm \u2013 Extreme learning machine","volume":"173","author":"He","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0024","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/abeea7","article-title":"An effective health indicator for the Pelton wheel using a Levy flight mutated genetic algorithm","volume":"32","author":"Vashishtha","year":"2021","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109815","article-title":"A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm","volume":"184","author":"Feng","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2023.104334","article-title":"A method based on VMD improved by SSA for leak location of water distribution","volume":"145","author":"Yu","year":"2024","journal-title":"Digit. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0027","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.3390\/electronics12071658","article-title":"An Ice-penetrating signal Denoising method based on WOA-VMD-BD","volume":"12","author":"Lu","year":"2023","journal-title":"Electronics."},{"key":"10.1016\/j.dsp.2024.104590_bib0028","doi-asserted-by":"crossref","first-page":"674","DOI":"10.3390\/photonics10060674","article-title":"Research on VMD-based adaptive TDLAS signal Denoising method","volume":"10","author":"Mao","year":"2023","journal-title":"Photonics."},{"key":"10.1016\/j.dsp.2024.104590_bib0029","doi-asserted-by":"crossref","first-page":"831","DOI":"10.1007\/s00170-022-10672-8","article-title":"A chatter detection method in milling based on gray wolf optimization VMD and multi-entropy features","volume":"125","author":"Liu","year":"2023","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0030","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ad087e","article-title":"Fault diagnosis method of weak vibration signal based on improved VMD and MCKD","volume":"35","author":"Ke","year":"2024","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0031","doi-asserted-by":"crossref","first-page":"5925","DOI":"10.1007\/s12206-022-1109-3","article-title":"Detecting the weak damped oscillation signal in the agricultural machinery working environment by vibrational resonance in the duffing system","volume":"36","author":"Wang","year":"2022","journal-title":"J Mech Sci Technol"},{"key":"10.1016\/j.dsp.2024.104590_bib0032","doi-asserted-by":"crossref","first-page":"22608","DOI":"10.1109\/JSEN.2023.3306199","article-title":"Fading Noise Suppression Method of \u03a6-OTDR System Based on GA-VMD Algorithm","volume":"23","author":"Li","year":"2023","journal-title":"IEEE Sensors J"},{"key":"10.1016\/j.dsp.2024.104590_bib0033","doi-asserted-by":"crossref","first-page":"4891","DOI":"10.1109\/TAES.2022.3184913","article-title":"Application of augmented spread spectrum time domain reflectometry for detection and localization of soft faults on a coaxial cable","volume":"58","author":"Shi","year":"2022","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"10.1016\/j.dsp.2024.104590_bib0034","series-title":"2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology","first-page":"795","article-title":"Feature extraction of rolling bearing early faults based on AFSA-VMD","author":"Jiao","year":"2020"},{"key":"10.1016\/j.dsp.2024.104590_bib0035","doi-asserted-by":"crossref","first-page":"17337","DOI":"10.1007\/s11071-023-08728-9","article-title":"A new model for bearing fault diagnosis based on optimized variational mode decomposition correlation coefficient weight threshold denoising and entropy feature fusion","volume":"111","author":"Yang","year":"2023","journal-title":"Nonlinear. Dyn."},{"key":"10.1016\/j.dsp.2024.104590_bib0036","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1177\/0142331219875348","article-title":"Application of optimized variational mode decomposition based on kurtosis and resonance frequency in bearing fault feature extraction","volume":"42","author":"Li","year":"2020","journal-title":"Transact. Inst. Measure. Control"},{"key":"10.1016\/j.dsp.2024.104590_bib0037","doi-asserted-by":"crossref","first-page":"2807","DOI":"10.1007\/s12206-023-0508-4","article-title":"Multi-feature optimized VMD and fusion index for bearing fault diagnosis method","volume":"37","author":"Liu","year":"2023","journal-title":"J. Mech. Sci. Technol."},{"key":"10.1016\/j.dsp.2024.104590_bib0038","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.1177\/00202940231174405","article-title":"The Single-channel blind source separation based on VMD and Tukey M estimation for rolling bearing composite fault diagnosis","volume":"56","author":"Wang","year":"2023","journal-title":"Measure. Control"},{"key":"10.1016\/j.dsp.2024.104590_bib0039","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107733","article-title":"Research on sparsity indexes for fault diagnosis of rotating machinery","volume":"158","author":"Miao","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0040","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.ymssp.2015.04.034","article-title":"The infogram: entropic evidence of the signature of repetitive transients","volume":"74","author":"Antoni","year":"2016","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0041","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.107930","article-title":"Box-Cox sparse measures: a new family of sparse measures constructed from kurtosis and negative entropy","volume":"160","author":"Wang","year":"2021","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0042","doi-asserted-by":"crossref","first-page":"4281","DOI":"10.1007\/s12206-021-0901-9","article-title":"Compound fault diagnosis and identification of hoist spindle device based on hilbert huang and energy entropy","volume":"35","author":"Gu","year":"2021","journal-title":"J Mech Sci Technol"},{"key":"10.1016\/j.dsp.2024.104590_bib0043","doi-asserted-by":"crossref","first-page":"541","DOI":"10.3390\/e21060541","article-title":"Approximate entropy and sample entropy: a comprehensive tutorial","volume":"21","author":"Delgado-Bonal","year":"2019","journal-title":"Entropy"},{"key":"10.1016\/j.dsp.2024.104590_bib0044","doi-asserted-by":"crossref","first-page":"4532","DOI":"10.1109\/TII.2020.3018499","article-title":"Spearman correlation-based pilot protection for transmission line connected to PMSGs and DFIGs","volume":"17","author":"Jia","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.dsp.2024.104590_bib0045","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.measurement.2015.08.019","article-title":"A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings","volume":"76","author":"Han","year":"2015","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0046","doi-asserted-by":"crossref","first-page":"8635","DOI":"10.1109\/TII.2022.3220905","article-title":"A multi-indicator fusion-based approach for fault feature selection and classification of rolling bearings","volume":"19","author":"Peng","year":"2023","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.dsp.2024.104590_bib0047","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1016\/j.ymssp.2017.07.001","article-title":"Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis","volume":"99","author":"Zhang","year":"2018","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0048","doi-asserted-by":"crossref","first-page":"2560","DOI":"10.1016\/j.ymssp.2006.12.007","article-title":"Support vector machine in machine condition monitoring and fault diagnosis","volume":"21","author":"Widodo","year":"2007","journal-title":"Mech. Syst. Signal. Process."},{"key":"10.1016\/j.dsp.2024.104590_bib0049","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107908","article-title":"Feature extraction of the hydraulic pump fault based on improved Autogram","volume":"163","author":"Zheng","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2024.104590_bib0050","doi-asserted-by":"crossref","first-page":"2300","DOI":"10.1016\/j.asoc.2010.08.011","article-title":"Fault diagnosis of ball bearings using continuous wavelet transform","volume":"11","author":"Kankar","year":"2011","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.dsp.2024.104590_bib0051","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105120042400215X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105120042400215X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T02:42:57Z","timestamp":1722393777000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S105120042400215X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":51,"alternative-id":["S105120042400215X"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2024.104590","relation":{},"ISSN":["1051-2004"],"issn-type":[{"type":"print","value":"1051-2004"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Rotating machinery fault diagnosis based on parameter-optimized variational mode decomposition","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2024.104590","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"104590"}}