{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T12:42:05Z","timestamp":1721047325183},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006606","name":"Natural Science Foundation of Tianjin Municipality","doi-asserted-by":"publisher","award":["21JCZDJC00770"],"id":[{"id":"10.13039\/501100006606","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007538","name":"Civil Aviation Administration of China","doi-asserted-by":"publisher","award":["U1733108"],"id":[{"id":"10.13039\/501100007538","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.dsp.2023.104368","type":"journal-article","created":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T17:04:16Z","timestamp":1703783056000},"page":"104368","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Multiscale capsule networks with attention mechanisms based on domain-invariant properties for cross-domain lifetime prediction"],"prefix":"10.1016","volume":"146","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7310-0921","authenticated-orcid":false,"given":"Zhiwu","family":"Shang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3463-9550","authenticated-orcid":false,"given":"Zehua","family":"Feng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2023.104368_bib0001","doi-asserted-by":"crossref","first-page":"9521","DOI":"10.1109\/TIE.2019.2924605","article-title":"Remaining useful life prediction based on a double-convolutional neural network architecture","volume":"66","author":"Yang","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.dsp.2023.104368_bib0002","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/j.ymssp.2016.06.031","article-title":"A multi-time scale approach to remaining useful life prediction in rolling bearing","volume":"83","author":"Gao","year":"2017","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2023.104368_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2019.106602","article-title":"A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions","volume":"139","author":"Zhu","year":"2020","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2023.104368_bib0004","doi-asserted-by":"crossref","first-page":"2521","DOI":"10.1109\/TIE.2020.2972443","article-title":"Machine remaining useful life prediction via an attention based deep learning approach","volume":"68","author":"Chen","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"9","key":"10.1016\/j.dsp.2023.104368_bib0005","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1080\/0740817X.2012.706376","article-title":"Condition monitoring and remaining useful life prediction using degradation signals: revisited","volume":"45","author":"Chen","year":"2013","journal-title":"IIE Trans."},{"key":"10.1016\/j.dsp.2023.104368_bib0006","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1109\/TR.2015.2456056","article-title":"Inference for the wiener process with random initiation time","volume":"65","author":"Paroissin","year":"2016","journal-title":"IEEE Trans. Reliab."},{"key":"10.1016\/j.dsp.2023.104368_bib0007","doi-asserted-by":"crossref","first-page":"2870","DOI":"10.1109\/TII.2018.2869429","article-title":"Joint online RUL prediction for multivariate deteriorating systems","volume":"15","author":"Weiwen","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.dsp.2023.104368_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.tafmec.2020.102554","article-title":"Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis","volume":"107","author":"Khatir","year":"2020","journal-title":"Theor. Appl. Fract. Mech."},{"key":"10.1016\/j.dsp.2023.104368_bib0009","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.ymssp.2012.02.015","article-title":"Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine","volume":"32","author":"Tran","year":"2012","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2023.104368_bib0010","doi-asserted-by":"crossref","unstructured":"Zhang C., Lim P., Qin A.K., et\u00a0al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE 28 (10) (2017) 2306\u20132318.","DOI":"10.1109\/TNNLS.2016.2582798"},{"key":"10.1016\/j.dsp.2023.104368_bib0011","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106113","article-title":"Remaining useful life prediction using multi-scale deep convolutional neural network","volume":"89","author":"Li","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.dsp.2023.104368_bib0012","series-title":"Particle Learning and Gated Recurrent Neural Network for Online Tool Wear Diagnosis and Prognosis","author":"Zhang","year":"2018"},{"key":"10.1016\/j.dsp.2023.104368_bib0013","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.1109\/TIE.2017.2733438","article-title":"Machine health monitoring using local feature-based gated recurrent unit networks","volume":"65","author":"Zhao","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.dsp.2023.104368_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107098","article-title":"Transfer learning for remaining useful life prediction based on consensus self-organizing models","volume":"203","author":"Fan","year":"2020","journal-title":"Reliab. Eng. Syst. Saf."},{"issue":"12","key":"10.1016\/j.dsp.2023.104368_bib0015","article-title":"A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection engineering","volume":"101","author":"Fu","year":"2021","journal-title":"Appl. Artif. Intell."},{"key":"10.1016\/j.dsp.2023.104368_bib0016","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108012","article-title":"Deep residual LSTM with domain-invariance for remaining useful life prediction across domains","volume":"216","author":"Fu","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.dsp.2023.104368_bib0017","doi-asserted-by":"crossref","first-page":"3488","DOI":"10.1109\/TII.2020.3005965","article-title":"Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images","volume":"17","author":"Shao","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.dsp.2023.104368_bib0018","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107556","article-title":"Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions","volume":"211","author":"Zhang","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.dsp.2023.104368_bib0019","article-title":"Remaining useful lifetime prediction via deep domain adaptation","volume":"195","author":"Costa","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.dsp.2023.104368_bib0020","doi-asserted-by":"crossref","unstructured":"Studies from Southeast university yield new data on mechatronics. Transfer learning for remaining useful life prediction across operating conditions based on multisource domain adaptation robotics & machine learning daily news. 27 (2022) 4143\u20134152.","DOI":"10.1109\/TMECH.2022.3147534"},{"key":"10.1016\/j.dsp.2023.104368_bib0021","doi-asserted-by":"crossref","first-page":"2416","DOI":"10.3390\/app8122416","article-title":"Transfer learning with deep recurrent neural networks for remaining useful life estimation","volume":"8","author":"Zhang","year":"2018","journal-title":"Appl. Sci."},{"key":"10.1016\/j.dsp.2023.104368_bib0022","article-title":"Domain adaptation via alignment of operation profile for remaining useful lifetime prediction","volume":"242","author":"Nejjar","year":"2023","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.dsp.2023.104368_bib0023","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/JSYST.2022.3183134","article-title":"A selective adversarial adaptation network for remaining useful life prediction of machines under different working conditions","volume":"17","author":"Ye","year":"2023","journal-title":"IEEE Syst. J."},{"key":"10.1016\/j.dsp.2023.104368_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106829","article-title":"Similarity-based meta-learning network with adversarial domain adaptation for cross-domain fault identification","volume":"217","author":"Feng","year":"2021","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.dsp.2023.104368_bib0025","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1109\/TII.2022.3172704","article-title":"Self-supervised deep domain-adversarial regression adaptation for online remaining useful life prediction of rolling bearing under unknown working condition","volume":"19","author":"Mao","year":"2023","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.dsp.2023.104368_bib0026","first-page":"1","article-title":"Going deeper with convolutions","volume":"17","author":"Szegedy","year":"2014","journal-title":"Comput. Sci."},{"key":"10.1016\/j.dsp.2023.104368_bib0027","doi-asserted-by":"crossref","first-page":"4974","DOI":"10.3390\/cancers13194974","article-title":"Dynamic routing between capsules","volume":"13","author":"Ha","year":"2021","journal-title":"Cancers"},{"key":"10.1016\/j.dsp.2023.104368_bib0028","first-page":"5085","article-title":"Deep convolutional transfer learning-based structural damage detection with domain adaptation","volume":"53","author":"Zuoyi","year":"2023","journal-title":"Appl. Intell."},{"key":"10.1016\/j.dsp.2023.104368_bib0029","doi-asserted-by":"crossref","first-page":"3354","DOI":"10.1073\/pnas.1309933111","article-title":"Equitability, mutual information, and the maximal information coefficient","volume":"111","author":"Kinney","year":"2014","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.dsp.2023.104368_bib0030","first-page":"1","article-title":"Damage propagation modeling for aircraft engine run-to-failure simulation","author":"Saxena","year":"2008","journal-title":"Progn. Health Manag."},{"key":"10.1016\/j.dsp.2023.104368_bib0031","first-page":"26","article-title":"Independently recurrent neural network for remaining useful life estimation","volume":"27","author":"Wang","year":"2020","journal-title":"J. China Univ. Posts Telecommun."},{"key":"10.1016\/j.dsp.2023.104368_bib0032","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106122","article-title":"A novel domain adaptive residual network for automatic atrialfibrillation detection","volume":"203","author":"Jin","year":"2020","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.dsp.2023.104368_bib0033","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109287","article-title":"Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network","volume":"178","author":"Cao","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.dsp.2023.104368_bib0034","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105843","article-title":"Data alignments in machinery remaining useful life prediction using deep adversarial neural networks","volume":"197","author":"Li","year":"2020","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.dsp.2023.104368_bib0035","series-title":"Proceedings of the IEEE International Conference on Prognostics and Health Management","article-title":"PRONOSTIA: an experimental platform for bearings accelerated degradation tests","author":"Nectoux","year":"2012"},{"key":"10.1016\/j.dsp.2023.104368_bib0036","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.rcim.2016.05.010","article-title":"Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing","volume":"45","author":"Wang","year":"2017","journal-title":"Robot. Comput. Integr. Manuf."}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200423004633?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200423004633?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,9]],"date-time":"2024-02-09T05:53:19Z","timestamp":1707457999000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200423004633"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":36,"alternative-id":["S1051200423004633"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2023.104368","relation":{},"ISSN":["1051-2004"],"issn-type":[{"value":"1051-2004","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multiscale capsule networks with attention mechanisms based on domain-invariant properties for cross-domain lifetime prediction","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2023.104368","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104368"}}