{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T19:10:14Z","timestamp":1730401814898,"version":"3.28.0"},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,24]],"date-time":"2023-10-24T00:00:00Z","timestamp":1698105600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100014440","name":"Espana Ministerio de Ciencia e Innovacion","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006302","name":"Universidad de Alcal\u00e1","doi-asserted-by":"publisher","award":["PID2020-115454GB-C21"],"id":[{"id":"10.13039\/501100006302","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.dsp.2023.104270","type":"journal-article","created":{"date-parts":[[2023,10,24]],"date-time":"2023-10-24T16:12:07Z","timestamp":1698163927000},"page":"104270","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["CoSeNet: A novel approach for optimal segmentation of correlation matrices"],"prefix":"10.1016","volume":"144","author":[{"given":"A.","family":"Palomo-Alonso","sequence":"first","affiliation":[]},{"given":"D.","family":"Casillas-P\u00e9rez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2065-1754","authenticated-orcid":false,"given":"S.","family":"Jim\u00e9nez-Fern\u00e1ndez","sequence":"additional","affiliation":[]},{"given":"A.","family":"Portilla-Figueras","sequence":"additional","affiliation":[]},{"given":"S.","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2023.104270_br0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103578","article-title":"Fully extracting feature correlation between and within stages for semantic segmentation","volume":"127","author":"Yuan","year":"2022","journal-title":"Digit. Signal Process."},{"issue":"6","key":"10.1016\/j.dsp.2023.104270_br0020","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1016\/j.dsp.2006.08.009","article-title":"On the application of cross correlation function to subsample discrete time delay estimation","volume":"16","author":"Zhang","year":"2006","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.dsp.2023.104270_br0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2019.102623","article-title":"2-D DOA estimation via correlation matrix reconstruction for nested l-shaped array","volume":"98","author":"Yang","year":"2020","journal-title":"Digit. Signal Process."},{"issue":"11","key":"10.1016\/j.dsp.2023.104270_br0040","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.dsp.2023.104270_br0050","doi-asserted-by":"crossref","first-page":"2988","DOI":"10.1109\/TIP.2017.2691557","article-title":"Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework","volume":"26","author":"Li","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.dsp.2023.104270_br0060","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.mri.2010.09.003","article-title":"Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis","volume":"29","author":"Du","year":"2011","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.dsp.2023.104270_br0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2023.103815","article-title":"Weakly supervised fine-grained semantic segmentation via spatial correlation-guided learning","author":"Dong","year":"2023","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.dsp.2023.104270_br0080","doi-asserted-by":"crossref","first-page":"3055","DOI":"10.1109\/TASLP.2023.3301231","article-title":"A flexible architecture using temporal, spatial and semantic correlation-based algorithms for story segmentation of broadcast news","volume":"31","author":"Palomo-Alonso","year":"2023","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.dsp.2023.104270_br0090","doi-asserted-by":"crossref","first-page":"835","DOI":"10.1016\/j.chaos.2017.05.039","article-title":"Dynamics of cluster structure in financial correlation matrix","volume":"104","author":"Nie","year":"2017","journal-title":"Chaos Solitons Fractals"},{"issue":"B","key":"10.1016\/j.dsp.2023.104270_br0100","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1140\/epjb\/e2002-00380-9","article-title":"Dynamic asset trees and portfolio analysis","volume":"30","author":"Onnela","year":"2002","journal-title":"Eur. Phys. J."},{"year":"2022","series-title":"Cross-Asset Correlations in a More Inflationary Environment and Challenges for Diversification Strategies","author":"Mosk","key":"10.1016\/j.dsp.2023.104270_br0110"},{"issue":"528","key":"10.1016\/j.dsp.2023.104270_br0120","article-title":"A specialized learner for inferring structured cis-regulatory modules","volume":"7","author":"Noto","year":"2006","journal-title":"Bioinformatics"},{"issue":"C","key":"10.1016\/j.dsp.2023.104270_br0130","article-title":"SEaCorAl: identifying and contrasting the regulation-correlation bias in RNA-Seq paired expression data of patient groups","volume":"135","author":"Petti","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.dsp.2023.104270_br0140","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.bspc.2018.03.009","article-title":"Automatic heart sounds segmentation based on the correlation coefficients matrix for similar cardiac cycles identification","volume":"43","author":"Belmecheri","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.dsp.2023.104270_br0150","article-title":"Fast algorithm for detecting community structure in networks","volume":"69","author":"Newman","year":"2004","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.dsp.2023.104270_br0160","first-page":"744","article-title":"Relationship between ENSO and rainfall in the central plain of thailand","volume":"44","author":"Wikarmpapraharn","year":"2010","journal-title":"Kasetsart J.: Nat. Sci."},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0170","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/s100510050929","article-title":"Hierarchical structure in financial markets","volume":"11","author":"Mantegna","year":"1999","journal-title":"Eur. Phys. J. B, Condens. Matter Complex Syst."},{"issue":"10","key":"10.1016\/j.dsp.2023.104270_br0180","doi-asserted-by":"crossref","DOI":"10.1088\/1742-5468\/2008\/10\/P10008","article-title":"Fast unfolding of communities in large networks","volume":"2008","author":"Blondel","year":"2008","journal-title":"J. Stat. Mech. Theory Exp."},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0190","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.cosrev.2007.05.001","article-title":"Graph clustering","volume":"1","author":"Schaeffer","year":"2007","journal-title":"Comput. Sci. Rev."},{"key":"10.1016\/j.dsp.2023.104270_br0200","series-title":"Identifying the Significant Change of Gene Expression in Genomic Series Data for Epistasis Peaks","first-page":"245","author":"Tam","year":"2021"},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0210","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1186\/s12859-017-1742-5","article-title":"Segcorr a statistical procedure for the detection of genomic regions of correlated expression","volume":"18","author":"Delatola","year":"2017","journal-title":"BMC Bioinform."},{"issue":"30","key":"10.1016\/j.dsp.2023.104270_br0220","doi-asserted-by":"crossref","first-page":"10421","DOI":"10.1073\/pnas.0500298102","article-title":"A tool for filtering information in complex systems","volume":"102","author":"Tumminello","year":"2005","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.dsp.2023.104270_br0230","series-title":"Advances in Neural Information Processing Systems","first-page":"849","article-title":"On spectral clustering: analysis and an algorithm","author":"Ng","year":"2001"},{"issue":"3","key":"10.1016\/j.dsp.2023.104270_br0240","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.physrep.2009.11.002","article-title":"Community detection in graphs","volume":"486","author":"Fortunato","year":"2010","journal-title":"Phys. Rep."},{"key":"10.1016\/j.dsp.2023.104270_br0250","series-title":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"31","article-title":"Deep clustering: discriminative embeddings for segmentation and separation","author":"Hershey","year":"2016"},{"key":"10.1016\/j.dsp.2023.104270_br0260","unstructured":"M.H. Chehreghani, Hierarchical correlation clustering and tree preserving embedding, ArXiv (2020)."},{"key":"10.1016\/j.dsp.2023.104270_br0270","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2021.118607","article-title":"Modularity maximization as a flexible and generic framework for brain network exploratory analysis","volume":"244","author":"Zamani Esfahlani","year":"2021","journal-title":"NeuroImage"},{"year":"2018","series-title":"Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding","author":"Devlin","key":"10.1016\/j.dsp.2023.104270_br0280"},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0290","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc., Ser. B, Methodol."},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0300","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1080\/00401706.1970.10488634","article-title":"Ridge regression: biased estimation for nonorthogonal problems","volume":"12","author":"Hoerl","year":"1970","journal-title":"Technometrics"},{"issue":"2","key":"10.1016\/j.dsp.2023.104270_br0310","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","article-title":"Regularization and variable selection via the elastic net","volume":"67","author":"Zou","year":"2005","journal-title":"J. R. Stat. Soc., Ser. B, Stat. Methodol."},{"issue":"2","key":"10.1016\/j.dsp.2023.104270_br0320","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1214\/009053604000000067","article-title":"Least angle regression","volume":"32","author":"Efron","year":"2004","journal-title":"Ann. Stat."},{"issue":"3","key":"10.1016\/j.dsp.2023.104270_br0330","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1162\/neco.1992.4.3.415","article-title":"Bayesian interpolation","volume":"4","author":"MacKay","year":"1992","journal-title":"Neural Comput."},{"issue":"Jun","key":"10.1016\/j.dsp.2023.104270_br0340","first-page":"211","article-title":"Sparse Bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.dsp.2023.104270_br0350","series-title":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, vol. 1","first-page":"40","article-title":"Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition","author":"Pati","year":"1993"},{"issue":"12","key":"10.1016\/j.dsp.2023.104270_br0360","doi-asserted-by":"crossref","first-page":"3397","DOI":"10.1109\/78.258082","article-title":"Matching pursuits with time-frequency dictionaries","volume":"41","author":"Mallat","year":"1993","journal-title":"IEEE Trans. Signal Process."},{"year":"1995","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","key":"10.1016\/j.dsp.2023.104270_br0370"},{"key":"10.1016\/j.dsp.2023.104270_br0380","first-page":"61","article-title":"Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods","volume":"10","author":"Platt","year":"1999","journal-title":"Adv. Large Margin Class."},{"issue":"3","key":"10.1016\/j.dsp.2023.104270_br0390","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.dsp.2023.104270_br0400","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1002\/widm.1125","article-title":"Support vector machines in engineering: an overview","volume":"4","author":"Salcedo-Sanz","year":"2014","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"year":"1997","series-title":"Linear Algebra Done Right","author":"Axler","key":"10.1016\/j.dsp.2023.104270_br0410"},{"year":"2012","series-title":"Ensemble Methods: Foundations and Algorithms","author":"Zhou","key":"10.1016\/j.dsp.2023.104270_br0420"},{"year":"1984","series-title":"Classification and Regression Trees","author":"Breiman","key":"10.1016\/j.dsp.2023.104270_br0430"},{"key":"10.1016\/j.dsp.2023.104270_br0440","series-title":"Data Mining and Knowledge Discovery Handbook","first-page":"165","article-title":"Decision trees","author":"Rokach","year":"2005"},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0450","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","article-title":"Extremely randomized trees","volume":"63","author":"Geurts","year":"2006","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0460","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0470","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. Syst. Sci."},{"issue":"6088","key":"10.1016\/j.dsp.2023.104270_br0480","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"issue":"2004","key":"10.1016\/j.dsp.2023.104270_br0490","first-page":"41","article-title":"A comprehensive foundation","volume":"2","author":"Haykin","year":"2004","journal-title":"Neural Netw."},{"year":"1995","series-title":"Neural Networks for Pattern Recognition","author":"Bishop","key":"10.1016\/j.dsp.2023.104270_br0500"},{"issue":"7553","key":"10.1016\/j.dsp.2023.104270_br0510","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.dsp.2023.104270_br0520","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1162\/089120102317341756","article-title":"A critique and improvement of an evaluation metric for text segmentation","volume":"28","author":"Pevzner","year":"2002","journal-title":"Comput. Linguist."},{"key":"10.1016\/j.dsp.2023.104270_br0530","series-title":"Proceedings of the 2014 ACM Symposium on Document Engineering, DocEng '14","first-page":"73","article-title":"On automatic text segmentation","author":"Dadachev","year":"2014"},{"key":"10.1016\/j.dsp.2023.104270_br0540","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"year":"2015","series-title":"Large-Scale Machine Learning on Heterogeneous Systems","author":"Abadi","key":"10.1016\/j.dsp.2023.104270_br0550"},{"year":"2015","series-title":"Keras","author":"Chollet","key":"10.1016\/j.dsp.2023.104270_br0560"},{"issue":"7825","key":"10.1016\/j.dsp.2023.104270_br0570","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1038\/s41586-020-2649-2","article-title":"Array programming with NumPy","volume":"585","author":"Harris","year":"2020","journal-title":"Nature"},{"issue":"11","key":"10.1016\/j.dsp.2023.104270_br0580","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1080\/14786440109462720","article-title":"On lines and planes of closest fit to systems of points in space","volume":"2","author":"Pearson","year":"1901","journal-title":"Philos. Mag."},{"year":"2017","series-title":"Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization","author":"Noh","key":"10.1016\/j.dsp.2023.104270_br0590"},{"key":"10.1016\/j.dsp.2023.104270_br0600","series-title":"Advances in Neural Information Processing Systems, vol. 30","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.dsp.2023.104270_br0610","first-page":"1942","article-title":"Particle Swarm Optimization","volume":"vol. 4","author":"Kennedy","year":"1995"},{"key":"10.1016\/j.dsp.2023.104270_br0620","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.swevo.2019.04.008","article-title":"Bio-inspired computation: where we stand and what's next","volume":"48","author":"Del Ser","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.dsp.2023.104270_br0630","series-title":"Proceedings of the 24th International Conference on Neural Information Processing Systems","first-page":"1324","article-title":"Random search for hyper-parameter optimization","author":"Bergstra","year":"2012"},{"author":"Caron","key":"10.1016\/j.dsp.2023.104270_br0640"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200423003652?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200423003652?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T18:56:42Z","timestamp":1730401002000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200423003652"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":64,"alternative-id":["S1051200423003652"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2023.104270","relation":{},"ISSN":["1051-2004"],"issn-type":[{"type":"print","value":"1051-2004"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CoSeNet: A novel approach for optimal segmentation of correlation matrices","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2023.104270","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"104270"}}