{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:58:33Z","timestamp":1742806713758,"version":"3.37.3"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100019054","name":"Changsha Science and Technology Project","doi-asserted-by":"publisher","award":["21ZY41"],"id":[{"id":"10.13039\/501100019054","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100017357","name":"Science and Technology Projects of Fujian Province","doi-asserted-by":"publisher","award":["20200404208YY"],"id":[{"id":"10.13039\/100017357","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61873304","62173048"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019T120240"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.dsp.2022.103828","type":"journal-article","created":{"date-parts":[[2022,11,25]],"date-time":"2022-11-25T20:49:20Z","timestamp":1669409360000},"page":"103828","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["sEMG-based continuous motion estimation of upper limb using a novel noise-tolerant zeroing neurodynamic model combined with LSTM network"],"prefix":"10.1016","volume":"133","author":[{"given":"Bangcheng","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Xuteng","family":"Lan","sequence":"additional","affiliation":[]},{"given":"Yongbai","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zhongbo","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2022.103828_br0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102404","article-title":"Human-robot interactions in manufacturing: a survey of human behavior modeling","volume":"78","author":"Jahanmahin","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.dsp.2022.103828_br0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102359","article-title":"An electromyography signals-based human-robot collaboration system for human motion intention recognition and realization","volume":"77","author":"Zhang","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.dsp.2022.103828_br0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.mechmachtheory.2021.104340","article-title":"Human-centred adaptive control of lower limb rehabilitation robot based on human\u2013robot interaction dynamic model","volume":"162","author":"Shi","year":"2021","journal-title":"Mech. Mach. Theory"},{"issue":"4","key":"10.1016\/j.dsp.2022.103828_br0040","doi-asserted-by":"crossref","first-page":"1888","DOI":"10.1109\/TCYB.2019.2947532","article-title":"Physical human\u2013robot collaboration: robotic systems, learning methods, collaborative strategies, sensors, and actuators","volume":"51","author":"Ogenyi","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.dsp.2022.103828_br0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.robot.2022.104047","article-title":"Perceived safety in physical human\u2013robot interaction\u2013a survey","volume":"151","author":"Rubagotti","year":"2022","journal-title":"Robot. Auton. Syst."},{"key":"10.1016\/j.dsp.2022.103828_br0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102074","article-title":"A review of the key technologies for sEMG-based human-robot interaction systems","volume":"62","author":"Li","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.dsp.2022.103828_br0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103787","article-title":"Hand gesture classification using time\u2013frequency images and transfer learning based on CNN","volume":"77","author":"Ozdemir","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"issue":"9","key":"10.1016\/j.dsp.2022.103828_br0080","doi-asserted-by":"crossref","first-page":"1518","DOI":"10.1109\/TNSRE.2016.2639527","article-title":"Continuous estimation of human multi-joint angles from sEMG using a state-space model","volume":"25","author":"Ding","year":"2016","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.dsp.2022.103828_br0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117340","article-title":"Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models","volume":"203","author":"Lu","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.dsp.2022.103828_br0100","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.bspc.2019.02.011","article-title":"A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration","volume":"51","author":"Bi","year":"2019","journal-title":"Biomed. Signal Process. Control"},{"issue":"08","key":"10.1016\/j.dsp.2022.103828_br0110","doi-asserted-by":"crossref","DOI":"10.1142\/S012906572150026X","article-title":"Epileptic EEG classification by using time-frequency images for deep learning","volume":"31","author":"Ozdemir","year":"2021","journal-title":"Int. J. Neural Syst."},{"issue":"3","key":"10.1016\/j.dsp.2022.103828_br0120","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1109\/TBME.2014.2369483","article-title":"A novel EOG\/EEG hybrid human\u2013machine interface adopting eye movements and ERPs: application to robot control","volume":"62","author":"Ma","year":"2014","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.dsp.2022.103828_br0130","doi-asserted-by":"crossref","first-page":"174542","DOI":"10.1109\/ACCESS.2020.3026037","article-title":"Corticomuscular co-activation based hybrid brain-computer interface for motor recovery monitoring","volume":"8","author":"Chowdhury","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.dsp.2022.103828_br0140","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jneumeth.2018.11.010","article-title":"An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation","volume":"312","author":"Chowdhury","year":"2019","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.dsp.2022.103828_br0150","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.dsp.2018.07.003","article-title":"Emotion recognition based on time\u2013frequency distribution of EEG signals using multivariate synchrosqueezing transform","volume":"81","author":"Mert","year":"2018","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.dsp.2022.103828_br0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2021.103153","article-title":"Emotion recognition based on fusion of long short-term memory networks and SVMs","volume":"117","author":"Chen","year":"2021","journal-title":"Digit. Signal Process."},{"issue":"6","key":"10.1016\/j.dsp.2022.103828_br0170","doi-asserted-by":"crossref","first-page":"1428","DOI":"10.1109\/TNSRE.2020.2986884","article-title":"Classification of electromyographic hand gesture signals using modified fuzzy C-means clustering and two-step machine learning approach","volume":"28","author":"Jia","year":"2020","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"7","key":"10.1016\/j.dsp.2022.103828_br0180","doi-asserted-by":"crossref","first-page":"4267","DOI":"10.1109\/TIE.2014.2387337","article-title":"A state-space EMG model for the estimation of continuous joint movements","volume":"62","author":"Han","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"10","key":"10.1016\/j.dsp.2022.103828_br0190","doi-asserted-by":"crossref","first-page":"1785","DOI":"10.1109\/TNSRE.2017.2699598","article-title":"Gaussian process autoregression for simultaneous proportional multi-modal prosthetic control with natural hand kinematics","volume":"25","author":"Xiloyannis","year":"2017","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"3","key":"10.1016\/j.dsp.2022.103828_br0200","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1007\/s11063-014-9391-4","article-title":"Estimation of lower limb periodic motions from sEMG using least squares support vector regression","volume":"41","author":"Li","year":"2015","journal-title":"Neural Process. Lett."},{"issue":"4","key":"10.1016\/j.dsp.2022.103828_br0210","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1109\/TITB.2011.2151869","article-title":"Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human\u2013machine cooperation","volume":"15","author":"Kwon","year":"2011","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"10.1016\/j.dsp.2022.103828_br0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102657","article-title":"Motion estimation of elbow joint from sEMG using continuous wavelet transform and back propagation neural networks","volume":"68","author":"Huang","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"10.1016\/j.dsp.2022.103828_br0230","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.neucom.2011.05.033","article-title":"sEMG-based continuous estimation of joint angles of human legs by using BP neural network","volume":"78","author":"Zhang","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.dsp.2022.103828_br0240","series-title":"2019 Chinese Automation Congress (CAC)","first-page":"1783","article-title":"A novel estimation approach of sEMG-based joint movements via RBF neural network","author":"Wang","year":"2019"},{"key":"10.1016\/j.dsp.2022.103828_br0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102024","article-title":"Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach","volume":"61","author":"Ma","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"issue":"4","key":"10.1016\/j.dsp.2022.103828_br0260","doi-asserted-by":"crossref","first-page":"7217","DOI":"10.1109\/LRA.2021.3097272","article-title":"A bi-directional LSTM network for estimating continuous upper limb movement from surface electromyography","volume":"6","author":"Ma","year":"2021","journal-title":"IEEE Robot. Autom. Lett."},{"year":"2001","series-title":"Basic Biomechanics of the Musculoskeletal System","author":"Nordin","key":"10.1016\/j.dsp.2022.103828_br0270"},{"issue":"1","key":"10.1016\/j.dsp.2022.103828_br0280","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1111\/1469-8986.3810022","article-title":"Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles","volume":"38","author":"Van Boxtel","year":"2001","journal-title":"Psychophysiology"},{"issue":"8","key":"10.1016\/j.dsp.2022.103828_br0290","doi-asserted-by":"crossref","first-page":"1573","DOI":"10.1016\/j.jbiomech.2010.01.027","article-title":"Filtering the surface emg signal: movement artifact and baseline noise contamination","volume":"43","author":"De Luca","year":"2010","journal-title":"J. Biomech."},{"key":"10.1016\/j.dsp.2022.103828_br0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103115","article-title":"A neural network-based model for lower limb continuous estimation against the disturbance of uncertainty","volume":"71","author":"Li","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.dsp.2022.103828_br0310","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.neucom.2019.01.064","article-title":"Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: a control-theoretic approach","volume":"337","author":"Sun","year":"2019","journal-title":"Neurocomputing"},{"issue":"11","key":"10.1016\/j.dsp.2022.103828_br0320","doi-asserted-by":"crossref","first-page":"1217","DOI":"10.1007\/s00521-016-2640-x","article-title":"Neural network-based discrete-time Z-type model of high accuracy in noisy environments for solving dynamic system of linear equations","volume":"29","author":"Jin","year":"2018","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.dsp.2022.103828_br0330","series-title":"2017 International Conference on Nascent Technologies in Engineering (ICNTE)","first-page":"1","article-title":"Automated big-o analysis of algorithms","author":"Vaz","year":"2017"},{"issue":"8","key":"10.1016\/j.dsp.2022.103828_br0340","doi-asserted-by":"crossref","first-page":"1940","DOI":"10.1109\/TAC.2009.2023779","article-title":"Performance analysis of gradient neural network exploited for online time-varying matrix inversion","volume":"54","author":"Zhang","year":"2009","journal-title":"IEEE Trans. Autom. Control"},{"key":"10.1016\/j.dsp.2022.103828_br0350","doi-asserted-by":"crossref","first-page":"174940","DOI":"10.1109\/ACCESS.2019.2956951","article-title":"A continuous estimation model of upper limb joint angles by using surface electromyography and deep learning method","volume":"7","author":"Chen","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.dsp.2022.103828_br0360","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1109\/TBME.2019.2935182","article-title":"EMG-based real-time linear-nonlinear cascade regression decoding of shoulder, elbow, and wrist movements in able-bodied persons and stroke survivors","volume":"67","author":"Liu","year":"2019","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.dsp.2022.103828_br0370","doi-asserted-by":"crossref","first-page":"63606","DOI":"10.1109\/ACCESS.2022.3181730","article-title":"MLOps: a taxonomy and a methodology","volume":"10","author":"Testi","year":"2022","journal-title":"IEEE Access"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200422004456?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200422004456?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,9]],"date-time":"2024-05-09T07:08:38Z","timestamp":1715238518000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200422004456"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":37,"alternative-id":["S1051200422004456"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2022.103828","relation":{},"ISSN":["1051-2004"],"issn-type":[{"type":"print","value":"1051-2004"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"sEMG-based continuous motion estimation of upper limb using a novel noise-tolerant zeroing neurodynamic model combined with LSTM network","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2022.103828","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103828"}}