{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T14:38:40Z","timestamp":1722091120456},"reference-count":23,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.dsp.2021.103048","type":"journal-article","created":{"date-parts":[[2021,4,7]],"date-time":"2021-04-07T12:48:06Z","timestamp":1617799686000},"page":"103048","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["An improved pre-processing approach for convex-geometry based blind source separation"],"prefix":"10.1016","volume":"114","author":[{"given":"Yuyang","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5732-9112","authenticated-orcid":false,"given":"Peng","family":"Xiao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4636-4339","authenticated-orcid":false,"given":"Bin","family":"Liao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.dsp.2021.103048_br0010","doi-asserted-by":"crossref","first-page":"702","DOI":"10.3390\/s17040702","article-title":"Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array","volume":"17","author":"Wang","year":"2017","journal-title":"Sensors"},{"issue":"12","key":"10.1016\/j.dsp.2021.103048_br0020","doi-asserted-by":"crossref","first-page":"3515","DOI":"10.1016\/j.sigpro.2013.03.037","article-title":"A Khatri-Rao subspace approach to blind identification of mixtures of quasi-stationary sources","volume":"93","author":"Lee","year":"2013","journal-title":"Signal Process."},{"issue":"6","key":"10.1016\/j.dsp.2021.103048_br0030","doi-asserted-by":"crossref","first-page":"1370","DOI":"10.1109\/TNN.2006.880980","article-title":"The fastICA algorithm revisited: convergence analysis","volume":"17","author":"Erkki","year":"2006","journal-title":"IEEE Trans. Neural Netw."},{"issue":"4","key":"10.1016\/j.dsp.2021.103048_br0040","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1109\/TASLP.2016.2647702","article-title":"A consolidated perspective on multi-microphone speech enhancement and source separation","volume":"25","author":"Gannot","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.dsp.2021.103048_br0050","series-title":"Computer Science and Electronic Engineering","article-title":"A blind source separation approach based on IVA for convolutive speech mixtures","author":"Jan","year":"2017"},{"issue":"7","key":"10.1016\/j.dsp.2021.103048_br0060","doi-asserted-by":"crossref","first-page":"1715","DOI":"10.1109\/TMI.2019.2893651","article-title":"Extraction of time-varying spatio-temporal networks using parameter-tuned constrained IVA","volume":"38","author":"Bhinge","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.dsp.2021.103048_br0070","series-title":"IEEE International Conference on Acoustics","article-title":"Low-latency real-time blind source separation for hearing aids based on time-domain implementation of online independent vector analysis with truncation of non-causal components","author":"Sunohara","year":"2017"},{"issue":"3","key":"10.1016\/j.dsp.2021.103048_br0080","first-page":"777","article-title":"A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation","volume":"5","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"6","key":"10.1016\/j.dsp.2021.103048_br0090","doi-asserted-by":"crossref","first-page":"1193","DOI":"10.1109\/TASL.2009.2031694","article-title":"Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures","volume":"18","author":"Nion","year":"2010","journal-title":"IEEE Trans. Audio Speech Lang. Process."},{"issue":"6","key":"10.1016\/j.dsp.2021.103048_br0100","doi-asserted-by":"crossref","first-page":"1841","DOI":"10.1007\/s00034-013-9719-8","article-title":"PARAFAC-based blind identification of underdetermined mixtures using Gaussian mixture model","volume":"33","author":"Gu","year":"2014","journal-title":"Circuits Syst. Signal Process."},{"key":"10.1016\/j.dsp.2021.103048_br0110","series-title":"IEEE International Conference on Acoustics","article-title":"Extraction of common task signals and spatial maps from group fmri using a PARAFAC-based tensor decomposition technique","author":"Sen","year":"2017"},{"key":"10.1016\/j.dsp.2021.103048_br0120","series-title":"International IEEE\/EMBS Conference on Neural Engineering","article-title":"Tensor based blind source separation for current source density analysis of evoked potentials from somatosensory cortex of mice","author":"Costa","year":"2017"},{"issue":"6","key":"10.1016\/j.dsp.2021.103048_br0130","doi-asserted-by":"crossref","first-page":"1656","DOI":"10.1109\/JBHI.2016.2624798","article-title":"Single-channel sparse nonnegative blind source separation method for automatic 3d delineation of lung tumor in pet images","volume":"21","author":"Kopriva","year":"2017","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"C","key":"10.1016\/j.dsp.2021.103048_br0140","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.sigpro.2015.03.006","article-title":"Blind audio source counting and separation of anechoic mixtures using the multichannel complex NMF framework","volume":"115","author":"Mirzaei","year":"2015","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.dsp.2021.103048_br0150","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/TASLP.2017.2774925","article-title":"Separation of moving sound sources using multichannel NMF and acoustic tracking","volume":"26","author":"Nikunen","year":"2017","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"issue":"9","key":"10.1016\/j.dsp.2021.103048_br0160","doi-asserted-by":"crossref","first-page":"1622","DOI":"10.1109\/TASLP.2016.2577880","article-title":"Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization","volume":"24","author":"Kitamura","year":"2016","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"issue":"9","key":"10.1016\/j.dsp.2021.103048_br0170","doi-asserted-by":"crossref","first-page":"2306","DOI":"10.1109\/TSP.2015.2404577","article-title":"Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain","volume":"63","author":"Xiao","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"issue":"4","key":"10.1016\/j.dsp.2021.103048_br0180","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1109\/TPAMI.2013.226","article-title":"Fast and robust recursive algorithms for separable nonnegative matrix factorization","volume":"36","author":"Gillis","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.dsp.2021.103048_br0190","doi-asserted-by":"crossref","first-page":"12417","DOI":"10.1109\/ACCESS.2017.2720578","article-title":"Precoding-based blind separation of mimo fir mixtures","volume":"5","author":"Liu","year":"2017","journal-title":"IEEE Access"},{"issue":"9","key":"10.1016\/j.dsp.2021.103048_br0200","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1016\/j.sigpro.2005.03.006","article-title":"Blind source separation of positive and partially correlated data","volume":"85","author":"Naanaa","year":"2005","journal-title":"Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2021.103048_br0210","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/TNN.2009.2034518","article-title":"Blind separation of mutually correlated sources using precoders","volume":"21","author":"Xiang","year":"2009","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.dsp.2021.103048_br0220","series-title":"Handbook of Blind Source Separation, Independent Component Analysis and Applications","author":"Comon","year":"2010"},{"key":"10.1016\/j.dsp.2021.103048_br0230","series-title":"IEEE International Conference on Acoustics","article-title":"Methods of fair comparison of performance of linear ica techniques in presence of additive noise","author":"Koldovsk","year":"2006"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200421000877?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200421000877?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,25]],"date-time":"2023-03-25T23:02:16Z","timestamp":1679785336000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200421000877"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":23,"alternative-id":["S1051200421000877"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2021.103048","relation":{},"ISSN":["1051-2004"],"issn-type":[{"value":"1051-2004","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An improved pre-processing approach for convex-geometry based blind source separation","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2021.103048","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103048"}}