{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:00:36Z","timestamp":1740106836618,"version":"3.37.3"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61627901"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.dsp.2020.102868","type":"journal-article","created":{"date-parts":[[2020,10,8]],"date-time":"2020-10-08T15:10:31Z","timestamp":1602169831000},"page":"102868","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["A pairwise graph regularized constraint based on deep belief network for fault diagnosis"],"prefix":"10.1016","volume":"108","author":[{"given":"Jie","family":"Yang","sequence":"first","affiliation":[]},{"given":"Weimin","family":"Bao","sequence":"additional","affiliation":[]},{"given":"Yanming","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiaoping","family":"Li","sequence":"additional","affiliation":[]},{"given":"Junjie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Niu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2020.102868_br0010","article-title":"Improved model predictive control for the flow field in a wind tunnel with model uncertainty","author":"Liu","year":"2020","journal-title":"J. Franklin Inst."},{"issue":"3","key":"10.1016\/j.dsp.2020.102868_br0020","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1109\/TCST.2009.2026285","article-title":"A survey of fault detection, isolation, and reconfiguration methods","volume":"18","author":"Hwang","year":"2010","journal-title":"IEEE Trans. Control Syst. Technol."},{"key":"10.1016\/j.dsp.2020.102868_br0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIE.2020.2973886","article-title":"Robust model predictive control for inductively coupled plasma generation with a semi-physical simulation","author":"Wang","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"year":"2016","series-title":"Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery","author":"Lei","key":"10.1016\/j.dsp.2020.102868_br0040"},{"issue":"3","key":"10.1016\/j.dsp.2020.102868_br0050","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.dsp.2003.12.003","article-title":"A method for intelligent fault diagnosis of rotating machinery","volume":"14","author":"Chen","year":"2004","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.dsp.2020.102868_br0060","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.ymssp.2017.06.012","article-title":"A review on data-driven fault severity assessment in rolling bearings","volume":"99","author":"Cerrada","year":"2018","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2020.102868_br0070","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.dsp.2018.02.018","article-title":"A new rotating machinery fault diagnosis method based on local oscillatory-characteristic decomposition","volume":"78","author":"Zhang","year":"2018","journal-title":"Digit. Signal Process."},{"issue":"6","key":"10.1016\/j.dsp.2020.102868_br0080","doi-asserted-by":"crossref","first-page":"3671","DOI":"10.3233\/JIFS-169542","article-title":"Regrouping particle swarm optimization based variable neural network for gearbox fault diagnosis","volume":"34","author":"Liao","year":"2018","journal-title":"J. Intell. Fuzzy Syst."},{"issue":"3","key":"10.1016\/j.dsp.2020.102868_br0090","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Corinna","year":"1995","journal-title":"Mach. Learn."},{"issue":"5786","key":"10.1016\/j.dsp.2020.102868_br0100","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"issue":"11","key":"10.1016\/j.dsp.2020.102868_br0110","doi-asserted-by":"crossref","first-page":"7067","DOI":"10.1109\/TIE.2016.2582729","article-title":"Real-time motor fault detection by 1-d convolutional neural networks","volume":"63","author":"Ince","year":"2016","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"1","key":"10.1016\/j.dsp.2020.102868_br0120","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1109\/TFUZZ.2015.2446535","article-title":"Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive","volume":"24","author":"Faa-jeng","year":"2016","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.dsp.2020.102868_br0130","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.ymssp.2015.10.025","article-title":"Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data","volume":"72\u201373","author":"Jia","year":"2016","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.dsp.2020.102868_br0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2020.102740","article-title":"A sample entropy inspired affinity propagation method for bearing fault signal classification","volume":"102","author":"Wang","year":"2020","journal-title":"Digit. Signal Process."},{"issue":"7","key":"10.1016\/j.dsp.2020.102868_br0150","doi-asserted-by":"crossref","first-page":"5990","DOI":"10.1109\/TIE.2017.2774777","article-title":"A new convolutional neural network-based data-driven fault diagnosis method","volume":"65","author":"Wen","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"1","key":"10.1016\/j.dsp.2020.102868_br0160","article-title":"Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks","volume":"99","author":"Cheng","year":"2019","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"11","key":"10.1016\/j.dsp.2020.102868_br0170","first-page":"1","article-title":"Rolling bearing fault diagnosis using an optimization deep belief network","volume":"26","author":"Shao","year":"2013","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.dsp.2020.102868_br0180","first-page":"1","article-title":"Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions","author":"Xing","year":"2020","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.dsp.2020.102868_br0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.107619","article-title":"Fault diagnosis of reciprocating compressor using a novel ensemble empirical mode decomposition-convolutional deep belief network","volume":"156","author":"Zhang","year":"2020","journal-title":"Measurement"},{"issue":"6583","key":"10.1016\/j.dsp.2020.102868_br0200","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1038\/381607a0","article-title":"Emergence of simple-cell receptive field properties by learning a sparse code for natural images","volume":"381","author":"Olshausen","year":"1996","journal-title":"Nature"},{"key":"10.1016\/j.dsp.2020.102868_br0210","doi-asserted-by":"crossref","DOI":"10.1177\/1077546319900115","article-title":"Reciprocating compressor fault diagnosis using an optimized convolutional deep belief network","author":"Zhang","year":"2020","journal-title":"J. Vib. Control"},{"key":"10.1016\/j.dsp.2020.102868_br0220","first-page":"873","article-title":"Sparse deep belief net model for visual area v2","volume":"20","author":"Lee","year":"2007","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"9","key":"10.1016\/j.dsp.2020.102868_br0230","doi-asserted-by":"crossref","first-page":"3179","DOI":"10.1016\/j.patcog.2014.03.025","article-title":"A sparse-response deep belief network based on rate distortion theory","volume":"47","author":"Ji","year":"2014","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.dsp.2020.102868_br0240","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.neunet.2019.09.035","article-title":"A sparse deep belief network with efficient fuzzy learning framework","volume":"121","author":"Wang","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.dsp.2020.102868_br0250","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1016\/j.patcog.2016.04.014","article-title":"Class sparsity signature based restricted Boltzmann machine","volume":"61","author":"Sankaran","year":"2017","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.dsp.2020.102868_br0260","doi-asserted-by":"crossref","first-page":"2651","DOI":"10.1109\/TNNLS.2017.2692773","article-title":"Graph regularized restricted Boltzmann machine","volume":"29","author":"Chen","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.dsp.2020.102868_br0270","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1109\/MSP.2010.939038","article-title":"Deep learning and its applications to signal and information processing","volume":"28","author":"Yu","year":"2011","journal-title":"IEEE Signal Process. Mag."},{"issue":"1","key":"10.1016\/j.dsp.2020.102868_br0280","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for AI","volume":"2","author":"Bengio","year":"2011","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.dsp.2020.102868_br0290","first-page":"1813","article-title":"Learning framework of multimodal Gaussian-Bernoulli rbm handling real-value input data","volume":"275","author":"Sanghyun","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.dsp.2020.102868_br0300","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.compchemeng.2017.02.041","article-title":"A deep belief network based fault diagnosis model for complex chemical processes","volume":"107","author":"Zhang","year":"2017","journal-title":"Comput. Chem. Eng."},{"issue":"8","key":"10.1016\/j.dsp.2020.102868_br0310","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1162\/089976602760128018","article-title":"Training products of experts by minimizing contrastive divergence","volume":"14","author":"Hinton","year":"2001","journal-title":"Neural Comput."},{"issue":"7","key":"10.1016\/j.dsp.2020.102868_br0320","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Comput."},{"issue":"11","key":"10.1016\/j.dsp.2020.102868_br0330","doi-asserted-by":"crossref","first-page":"2480","DOI":"10.1162\/0899766054796914","article-title":"Mixture modeling with pairwise, instance-level class constraints","volume":"17","author":"Zhao","year":"2005","journal-title":"Neural Comput."},{"issue":"7","key":"10.1016\/j.dsp.2020.102868_br0340","doi-asserted-by":"crossref","first-page":"2060","DOI":"10.1109\/JSEN.2015.2497545","article-title":"An information fusion fault diagnosis method based on dimensionless indicators with static discounting factor and knn","volume":"16","author":"Xiong","year":"2016","journal-title":"IEEE Sens. J."},{"issue":"7","key":"10.1016\/j.dsp.2020.102868_br0350","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1109\/TIM.2017.2669947","article-title":"Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network","volume":"66","author":"Chen","year":"2017","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"3","key":"10.1016\/j.dsp.2020.102868_br0360","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/0098-1354(93)80018-I","article-title":"A plant-wide industrial process control problem","volume":"17","author":"Downs","year":"1993","journal-title":"Comput. Chem. Eng."},{"issue":"8","key":"10.1016\/j.dsp.2020.102868_br0370","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/j.ifacol.2015.08.199","article-title":"Revision of the Tennessee Eastman process model","volume":"48","author":"Bathelt","year":"2015","journal-title":"IFAC-PapersOnLine"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105120042030213X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105120042030213X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,18]],"date-time":"2022-11-18T05:27:52Z","timestamp":1668749272000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S105120042030213X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":37,"alternative-id":["S105120042030213X"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2020.102868","relation":{},"ISSN":["1051-2004"],"issn-type":[{"type":"print","value":"1051-2004"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A pairwise graph regularized constraint based on deep belief network for fault diagnosis","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2020.102868","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102868"}}